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ABSTRACT
360-degree video is becoming an integral part of our content con-
sumption through both video on demand and live broadcast ser-
vices. However, live broadcast is still challenging due to the huge
network bandwidth cost if all 360-degree views are delivered to a
large viewer population over diverse networks. In this paper, we
present 360BroadView, a viewer management approach to viewport
prediction in 360-degree video live broadcast. We make some high-
bandwidth network viewers be leading viewers to help the others
(lagging viewers) predict viewports during 360-degree video view-
ing and save bandwidth. Our viewer management maintains the
leading viewer population despite viewer churns during live broad-
cast, so that the system keeps functioning properly. Our evaluation
shows that 360BroadView maintains the leading viewer population
at a minimal yet necessary level for 97 percent of the time.
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1 INTRODUCTION
360◦ video has omnidirectional recording and makes the viewer
have control of her viewing direction during viewing. Thus, it
naturally fits with mixed reality applications in which tech giants
(Apple, Microsoft, Google, Meta, etc.) are investing heavily, and
is becoming an integral part of our content consumption through
both video-on-demand (VOD) and live broadcast services.

Despite the bright prospect, it is unfeasible to deliver high-quality
360◦ content to a large viewer population over diverse networks.
Viewport prediction (VP) is then proposed to save bandwidth, so
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that viewers with poor networks can also enjoy 360◦ video. The
server splits a 360◦ video into small tiles, and encodes each tile into
multiple copies of various bitrates. Ideally, only the tiles predicted
to be in the viewer’s future viewport will be transmitted with high
bitrates; the other tiles will not be transmitted or transmitted with
lower bitrates. In practice, a less accurate VP solution requests more
extra tiles of high bitrates for fault tolerance in case the viewer’s
actual future viewport differs from the predicted one. Apparently,
the more accurate VP we use, the more bandwidth we save.

Existing VP solutions fall into two categories. First, single-user
viewport prediction (Single-VP) [16, 18, 19, 23] runs on the viewer’s
client-device, and uses the viewer’s own historical viewport tra-
jectory to predict her future viewport. Single-VP applies to both
360◦ VOD and live broadcast, but has high prediction accuracy only
in the near future (< 1 second), after which it turns inaccurate and
thus bandwidth-inefficient. Second, cross-user viewport prediction
(Cross-VP) [14, 16, 17, 21, 25] runs on the server. It assumes that
many viewers have watched the video, and their historical viewport
trajectories were uploaded and stored on the server. Thus, when the
current viewer is watching the same video, other viewers’ historical
viewports exist, and are used by the Cross-VP algorithm to predict
the current viewer’s future viewport. Cross-VP is more accurate
and thus bandwidth-efficient in the distant future and should be
used (alone or jointly with Single-VP) when available. However,
due to its dependency on other viewers’ historical viewports of the
same video, Cross-VP normally applies to only 360◦ VOD, not live
broadcast which has been watched by nobody.

In this paper, we seek to gain other viewers’ historical viewports
even during live broadcast, making existing Cross-VP solutions—
which is more bandwidth-efficient than Single-VP but was appli-
cable to only 360◦ VOD—now apply to live broadcast. We also
minimize the number of Single-VP users and maximize the number
of Cross-VP users throughout live broadcast despite viewer churns,
further decreasing the overall network traffic.

First, we use a grouping strategy to make some live broadcast
viewers use Single-VP and the others use Cross-VP. Based on re-
search [2, 11, 23, 27], the playout among live broadcast viewers can
be asynchronous for up to tens of seconds without affecting view-
ing experience. Thus, we let the server partition viewers into the
leading viewer group and the lagging viewer group. When requesting
video segments simultaneously, lagging viewers always get the con-
tent which was generated several (a constant) seconds earlier than
leading viewers. Hence, each video segment is watched by leading
viewers first and then by lagging viewers. Leading viewers use
Single-VP because no historical viewports exist for the segments
they will watch, and they keep uploading their actual viewports to
the server; several seconds later when it is lagging viewers’ turn to
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watch, the server has the historical viewports (from leading view-
ers) and conducts Cross-VP for lagging viewers. Thus, Cross-VP,
which did not apply to live broadcast, now does.

Second, on base of the grouping strategy, we devise a viewer
management approach to minimize the number of leading viewers
(Single-VP users) and maximize the number of lagging viewers
(Cross-VP users), further reducing the overall network traffic. Note
that our viewer management is new: it serves 360◦ video view-
port prediction, and should not be mistaken for the well-studied
viewer management for multicast streaming in conventional 2D
VOD systems [4]. Two challenges must be addressed:

1) How to reduce the leading viewer population to a small yet nec-
essary level, and maintain it throughout live broadcast despite viewer
churns? First of all, only high-bandwidth network (HBN) viewers,
who have more bandwidth than Single-VP requires, are qualified to
be leading viewers (Single-VP users). Instead of making all the HBN
viewers be leading viewers, we only assign a necessary portion of
them into the leading group, so that leading viewers are reduced
but Cross-VP still gets enough inputs. The superfluous HBN view-
ers, together with all the low-bandwidth network (LBN) viewers,
are assigned into the lagging group. Note that viewer churns are
common in live broadcast, and anyone may quit watching at any
time; even if there are enough leading viewers at the beginning,
as they leave, at some point Cross-VP can no longer get enough
inputs and will collapse. Our solution recycles the HBN viewers
from the lagging group, and reassigns them as leading viewers to
replenish the leading group. This process is not trivial: lagging
viewers’ watching progress is behind leading viewers’, thus if they
suddenly become leading viewers, they will experience a video
forward jump and be disturbed. How to make reassignment imper-
ceptible to them? We have a key observation that “elastic pieces”
are widespread in videos and viewers are insensitive to their dura-
tion. Hence, our system conducts reassignment only during elastic
pieces, keeping the viewers from noticing a video jump. 2) How to
maintain the leading viewer population at a minimal yet necessary
level? As mentioned, leading viewers can leave at any time, but we
cannot replenish the leading group until an elastic piece arrives.
Our solution continuously optimizes and adjusts the leading group
capacity by taking into account viewers’ churn rate and elastic
pieces’ occurrence interval. Our contributions are:

• We propose 360BroadView, the first viewer management ap-
proach to grouping based viewport prediction in 360◦ video
live broadcast. It minimizes the number of Single-VP users
to reduce the overall network traffic.

• We devise solutions to maintain the leading viewer popula-
tion at a minimal yet necessary level despite viewer churns,
and in a way which is imperceptible to viewers.

• Our evaluation shows that: even in the harshest test case,
360BroadView succeeds in maintaining a minimal yet nec-
essary leading viewer population for 97% of the time; its
maintenance process is totally imperceptible to viewers.

2 BACKGROUND AND RELATEDWORK
2.1 360◦ Video Tiled Streaming
360◦ video is bandwidth-demanding if entirely streamed. For effi-
cient delivery, the server splits a 360◦ video into short segments,

divides each segment into small tiles, and encodes each tile into mul-
tiple copies of various bitrates thus qualities. Viewport prediction
(VP) algorithms (Section 2.2), running on the client-device and/or
the server, predict the viewer’s future viewport. The client-device
conducts rate allocation [16, 18, 25, 26] and requests from the server
higher-bitrate copies for the tiles which are predicted to be in the
viewer’s future viewport, while lower-bitrate or no copies for the
tiles which are predicted to be out-of-sight.

2.2 Viewport Prediction
Single-VP. Single-user viewport prediction runs on the viewer’s
client-device. It uses the viewer’s own historical viewport trajec-
tory to predict her future viewport. Average prediction [19] (aka
static [18], last sample [14]) uses the average of recent viewports
as the predicted value of future viewport. Linear regression [19]
models human head motion within a short time as linear, and con-
ducts prediction based on this. Client navigation graph [16] treats
each view-tile relation as a state, uses a viewer’s past viewport
trajectory to compute the transition probabilities between states,
and predicts her future viewport and tiles. Feng et al. [6, 7] use
a lightweight CNN which is trained and used at runtime for VP.
The common drawback of a Single-VP solution is that it has high
prediction accuracy only in the near future (< 1 second).

Cross-VP. Cross-user viewport prediction runs on the server.
It assumes that many viewers have watched the same video, and
their historical viewport trajectories were uploaded and stored
on the server. Thus, for every segment the current viewer will
watch, the viewports from other viewers are available, and taken
as inputs to predict the current viewer’s future viewport. Server
navigation graph [16] is like a client one but trains the state machine
using old viewers’ trajectories. SEAWARE [17] is based on the
navigation graph and brings in object detection as well as the view-
object-tile relation as a state. CLS [25] clusters the old viewers
with similar viewing behavior, classifies the current viewer into the
cluster which her past behavior matches the best, and then predicts
her viewports. Work [14] is like CLS but operated in spherical
instead of Euclidean space. Flocking [21] presents a VP algorithm
which gives a larger weight to an old viewer’s viewports when
using them to compute the current viewer’s viewports, if the old
and current viewers have similar historical viewports.

Single-VP is less accurate than Cross-VP, especially in the distant
future [16, 17, 21, 25]. Thus, it needs to request more extra tiles for
fault tolerance in case the viewer’s actual future viewport differs
from the predicted one, and costs more bandwidth than Cross-VP
to achieve the same viewing quality. However, Cross-VP normally
does not apply to live broadcast, because a live video is a premiere
and other viewers’ historical viewports do not exist.

3 OVERVIEW OF 360BROADVIEW
3.1 Offline Configuration
360BroadView involves: 1) 360◦ cameras streaming live 360◦ con-
tent to a server; 2) the server processing and broadcasting the
live content; 3) viewers viewing the live content. 360BroadView
is orthogonal to and used together with two existing VP algo-
rithms (Single-VP and Cross-VP) and an existing video streaming
approach [28]. A human administrator configures the server to
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designate the exact VP algorithms to use. We select client naviga-
tion graph [16] as Single-VP and Flocking [21] as Cross-VP, but
other VP solutions also work. We assume that two constants of the
designated VP algorithms are provided:

• 𝐵𝑊𝑠𝑖𝑛𝑔𝑙𝑒 : the bandwidth cost of the designated Single-VP
algorithm. A viewer can be a Single-VP user only if her
available network bandwidth is ≥ 𝐵𝑊𝑠𝑖𝑛𝑔𝑙𝑒 .

• 𝑁𝑟𝑒𝑞 : the number of historical viewport trajectories required
by the designated Cross-VP algorithm as inputs. Cross-VP
cannot conduct accurate prediction with < 𝑁𝑟𝑒𝑞 inputs.

Each viewer, to become a 360BroadView user, must register for
an account in advance, getting her viewer 𝐼𝐷 and the designated
Single-VP algorithm installed on her client-device (e.g., headset).
The designated Cross-VP algorithm is installed on the server.

3.2 Viewport Prediction & Tiled Streaming
As depicted in Fig. 1, the live broadcast cameras continuously record,
upload and append 360◦ video segments to the video buffer on
the server. The server divides each segment into 𝐿 small tiles and
encodes each tile into multiple copies of various bitrates.
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Figure 1: 360BroadView VP-based viewing.

In Fig. 1, each viewer is either a leading viewer or a lagging
viewer; such a decision is made by 360BroadView’s viewer manage-
ment system (Section 3.3), then stored in the viewer database (➋)
and told to the viewer. First, a leading viewer runs Single-VP on her
client-device to get her 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 . ➊ The client-device
periodically sends to the server her 𝐼𝐷 and the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡

(represented by a quaternion which describes the viewing direction,
or a 𝐿-bit binary string where the 𝑖th (1 ≤ 𝑖 ≤ 𝐿) bit value states
whether the 𝑖th tile is in the future viewport or not). ➋ The Asyn-
chronous Content Retriever finds her to be a leading viewer after
viewer database lookup, ➌ then retrieves the video segment with
timestamp 𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔 in the video buffer and delivers part of its tiles
according to the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 to the viewer via an existing
video streaming approach [28]. ➍ Besides, her actual viewports in
the past few seconds are recorded by the client-device, and then
uploaded and stored in the viewport database.

𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔 denotes the generation timestamp of the video segment
that leading viewers will receive, and is computed as below:

𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑡𝑛𝑜𝑤 −𝑇𝑏𝑢𝑓 (1)

where 𝑡𝑛𝑜𝑤 is the current timestamp; 𝑇𝑏𝑢𝑓 is the time interval be-
tween a segment’s being generated by the camera and becoming
available on the server for viewer retrieval, which consists of the
time cost in video uploading, processing, and buffering for fluc-
tuation elimination. E.g., at 𝑡𝑛𝑜𝑤 = 10:00:15 AM, with 𝑇𝑏𝑢𝑓 = 10
seconds, the latest segment accessible to leading viewers was actu-
ally generated at 10:00:05 AM, and will be sent to them.

Second, ➎ a lagging viewer’s client-device periodically sends the
server her 𝐼𝐷 . ➋ The Asynchronous Content Retriever finds her to
be a lagging viewer after viewer database lookup, and will retrieve
the video segment with timestamp 𝑡𝑙𝑎𝑔𝑔𝑖𝑛𝑔 (older than 𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔) in
the video buffer. Because the segment is old, leading viewers have
watched it and uploaded their historical viewports. ➏ The server
queries those viewports from the viewport database and feeds
them into the Cross-VP algorithm, getting the 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 .
➐ Then the tiles of segment 𝑡𝑙𝑎𝑔𝑔𝑖𝑛𝑔 and corresponding to the
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑣𝑖𝑒𝑤𝑝𝑜𝑟𝑡 are retrieved and sent to the lagging viewer.

𝑡𝑙𝑎𝑔𝑔𝑖𝑛𝑔 denotes the generation timestamp of the video segment
that lagging viewers will receive, and is computed as below:

𝑡𝑙𝑎𝑔𝑔𝑖𝑛𝑔 = 𝑡𝑙𝑒𝑎𝑑𝑖𝑛𝑔 −𝑇𝑎𝑠𝑦𝑛𝑐 (2)
where 𝑇𝑎𝑠𝑦𝑛𝑐 is the two groups’ watching progress difference en-
forced by the server. It is configured by the human administrator.
We make it 5 seconds but other values are also fine.

As shown, when lagging and leading viewers request simulta-
neously, the former always get the content which was generated
𝑇𝑎𝑠𝑦𝑛𝑐 earlier than the latter. In this way, leading viewers’ watching
progress is constantly 𝑇𝑎𝑠𝑦𝑛𝑐 ahead, such that they can generate
inputs for Cross-VP, whose outputs are used by lagging viewers.

3.3 Viewer Management
Once a live broadcast starts, a viewer can join in watching and
leave at any time. As depicted in Fig. 2, when she joins, her client-
device sends her 𝐼𝐷 and available network bandwidth 𝐵𝑊𝑣𝑖𝑒𝑤𝑒𝑟 to
360BroadView’s viewer management system. She will be classified
as a high-bandwidth network (HBN) viewer if𝐵𝑊𝑣𝑖𝑒𝑤𝑒𝑟 ≥ 𝐵𝑊𝑠𝑖𝑛𝑔𝑙𝑒

(i.e., she can afford the bandwidth cost of Single-VP), otherwise as
a low-bandwidth network (LBN) viewer. According to a viewer’s
bandwidth type, she will be assigned into either the leading group,
which has a limited capacity 𝑁𝑚𝑎𝑥 (to be determined in Section 5),
or the lagging group, which is large enough to contain all viewers.
Specifically, HBN viewers are assigned to the leading group when
the leading viewer population is < 𝑁𝑚𝑎𝑥 , otherwise to the lagging
group. LBN viewers all go to the lagging group.
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Figure 2: 360BroadView viewer management.
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The viewer’s information regarding bandwidth type (𝑡𝑦𝑝𝑒 ∈
{𝐻𝐵𝑁, 𝐿𝐵𝑁 }) and group (𝑔𝑟𝑜𝑢𝑝 ∈ {𝑙𝑒𝑎𝑑𝑖𝑛𝑔, 𝑙𝑎𝑔𝑔𝑖𝑛𝑔}) is stored in
the viewer database (➋), in the format of (𝐼𝐷, 𝑡𝑦𝑝𝑒, 𝑔𝑟𝑜𝑢𝑝). The
viewer is then informed of her 𝑔𝑟𝑜𝑢𝑝 . As is seen, due to our viewer
management, there are at most 𝑁𝑚𝑎𝑥 leading viewers (Single-VP
users), and the others are all lagging viewers (Cross-VP users).

Viewer Maintenance. The leading group will have vacancies as
some leading viewers leave, and it will be replenished in two ways:
1) when new HBN viewers join, they must go to those vacancies
first; after the leading group is refilled (i.e., its population recovers
to 𝑁𝑚𝑎𝑥 ), subsequent HBN viewers will join the lagging group. 2)
under certain conditions, the HBN viewers in the lagging group
will be recycled and reassigned to the leading group. We discuss
the details of viewer maintenance in Section 4 and 5.

4 IMPERCEPTIBLE VIEWER MAINTENANCE
Viewer churns are common during live broadcast, and anyone may
quit watching at any time; even if there are 𝑁𝑟𝑒𝑞 (Section 3.1) or
more leading viewers at the beginning, as they leave, at some point
the leading viewer population will drop below 𝑁𝑟𝑒𝑞 and Cross-VP
can no longer get enough inputs to conduct accurate prediction.

Our solution recycles the HBN viewers from the lagging group
and reassigns them as leading viewers to replenish the leading
group. This process is not trivial: lagging viewers’ watching progress
is 𝑇𝑎𝑠𝑦𝑛𝑐 (Section 3.2, 5 seconds) behind leading viewers’, thus if
they are reassigned, they will experience a 𝑇𝑎𝑠𝑦𝑛𝑐 video forward
jump and be disturbed. To make it imperceptible, our system con-
ducts reassignment only when the viewer is watching an “elastic
piece”, whose duration can be adjusted without being noticed.

4.1 Elastic Piece
We notice that in live broadcast, key content (e.g., snippets of player
competition, artist singing) is commonly interspersed with less
important pieces (e.g., snippets of game break, audience reaction,
penalty kick preparation, repeated slow-motion replay). We call
the latter elastic pieces because decreasing their duration by several
seconds is imperceptible to viewers (see user study in Section 6.2).

Fig. 3 shows the occurrences of elastic pieces in three represen-
tative live broadcast programs. In a tennis match, four game breaks
happen within 30 minutes, starting at 2:02, 7:42, 21:01, 27:21. The
corresponding video snippets are 24, 70, 67, 67 seconds long, and
each is an elastic piece. It means that if the server only delivers, say,
the first 19 seconds of the 24-second game break view to viewers
and skips the remaining 5 seconds, viewers will not notice it.

0 5 10 15 20 25 30

Tennis

0 5 10 15 20 25 30

Football

0 5 10 15 20 25 30

Playout Time (min)

Singing

Figure 3: Elastic piece timelines. Red: break or preparation;
Blue: repeated slow-motion replay; Black: audience reaction.

Elastic Piece Occurrence Interval.We use 𝑇𝑒𝑝 to denote the
average interval between two adjacent elastic pieces. We find most
programs like sports and singing shows have 𝑇𝑒𝑝 < 10 min.

Elastic Piece Recognition.We assume that the server knows
which segments are elastic pieces, because a human videographer
can easily recognize elastic pieces like audience reaction and quickly
mark a newly generated video segment as elastic if it is, before it is
uploaded to the server. An automatic solution based on machine
learning is left to our future work.

4.2 Elastic Piece Based Reassignment
To imperceptibly reassign a HBN viewer from the lagging group
to the leading group, we do not change the duration of the elastic
piece for existing leading viewers while reducing it by 𝑇𝑎𝑠𝑦𝑛𝑐 for
the lagging viewer; after they finish watching their own versions
of elastic pieces, their watching progresses will become the same.

To elaborate, let’s assume that the leading group needs 𝑥 more
viewers to be refilled, and an elastic piece of audience reaction will
be played to existing leading viewers during the time [𝑡1, 𝑡2]. Origi-
nally it will be played to lagging viewers in [𝑡1+𝑇𝑎𝑠𝑦𝑛𝑐 , 𝑡2+𝑇𝑎𝑠𝑦𝑛𝑐 ].
Now under the control of 360BroadView, the broadcast server plays
audience reaction to 𝑥 randomly chosen HBN lagging viewers only
during [𝑡1+𝑇𝑎𝑠𝑦𝑛𝑐 , 𝑡2], skips the remaining 𝑇𝑎𝑠𝑦𝑛𝑐 elastic content,
such that the 𝑥 lagging viewers catch up with existing leading
viewers and thus become leading viewers at 𝑡2.

5 OPTIMAL VIEWER MAINTENANCE
We seek to minimize the number of leading viewers (Single-VP
users) to reduce network traffic, on the premise that it is above
𝑁𝑟𝑒𝑞 (Section 3.1), otherwise Cross-VP cannot get enough inputs.
To this end, we must find an optimal value of the leading group
capacity 𝑁𝑚𝑎𝑥 . As mentioned in Section 4, leading viewers can
leave at any time, but the leading group cannot be replenished
until an elastic piece arrives. Thus, 𝑁𝑚𝑎𝑥 must be larger than 𝑁𝑟𝑒𝑞 :
Δ = (𝑁𝑚𝑎𝑥 − 𝑁𝑟𝑒𝑞) extra leading viewers are accommodated so
that even if some leading viewers leave, the population will not go
below 𝑁𝑟𝑒𝑞 before next elastic piece arrives. If Δ is small, it may
not take long before Δ leading viewers leave, then Cross-VP no
longer gets 𝑁𝑟𝑒𝑞 inputs; If Δ is large, there are many unnecessary
leading viewers, violating our goal of minimization.

Our solution is to make 𝑁𝑚𝑎𝑥 dynamic and adaptive to viewers’
churn rate (how many viewers join/leave per minute) and elastic
pieces’ occurrence interval 𝑇𝑒𝑝 (Section 4.1), maintaining the lead-
ing viewer population at a minimal value above 𝑁𝑟𝑒𝑞 . As shown
in Section 3.3, 360BroadView has a viewer database: every time
a viewer joins, she is classified as HBN or LBN, and her record is
added to the viewer database; besides, we use a soft-state strategy
for viewer leaving detection—if a viewer has not requested any
video segment within the past 1 minute, she is regarded as gone
and her record is removed from the database. Thus, 360BroadView
can obtain the population and churn rate for each type of viewers.
The system updates Δ𝑛(𝑡) once per minute:

Δ𝑛(𝑡) = 𝑛
𝑗𝑜𝑖𝑛

𝐻𝐵𝑁
(𝑡) − 𝑛𝑙𝑒𝑎𝑣𝑒

𝑙𝑒𝑎𝑑𝑖𝑛𝑔
(𝑡) (3)

where 𝑛 𝑗𝑜𝑖𝑛
𝐻𝐵𝑁

(𝑡) denotes the number of HBN viewers who join in
watching within 1 minute before the moment 𝑡 ; 𝑛𝑙𝑒𝑎𝑣𝑒

𝑙𝑒𝑎𝑑𝑖𝑛𝑔
(𝑡) denotes
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the number of leading viewers who leave within 1 minute before
the moment 𝑡 . Apparently, a positive Δ𝑛(𝑡) means that in the 1
minute, the leading group can maintain or increase its population
(if the group is not full); a negative Δ𝑛(𝑡) means a leading viewer
population decrease. The measured Δ𝑛(𝑡) in each minute fluctuates,
and we use an exponential moving average Δ̃𝑛(𝑡) for smoothness:

Δ̃𝑛(𝑡) = ⌈(1 − 𝛼) · Δ̃𝑛(𝑡 − 1) + 𝛼 · Δ𝑛(𝑡)⌉ (4)
where 𝛼 is the weight given to the most recent observation. A larger
𝛼 makes Δ̃𝑛(𝑡) react more agilely but less smoothly. We empirically
set it as 0.3 to achieve a good balance.

1) 𝑁𝑚𝑎𝑥 = 𝑁𝑠𝑚𝑎𝑙𝑙 upon stable population. Δ̃𝑛(𝑡) ≥ 0 indi-
cates a stage of stable viewer population. In this situation, we can
simply set 𝑁𝑚𝑎𝑥 as 𝑁𝑠𝑚𝑎𝑙𝑙—a fixed value slightly larger than 𝑁𝑟𝑒𝑞 :

𝑁𝑠𝑚𝑎𝑙𝑙 = ⌈𝜂 · 𝑁𝑟𝑒𝑞⌉ (5)
where 𝜂 is a coefficient above 1. We empirically set 𝜂 = 1.1, so
the leading group has ⌈0.1𝑁𝑟𝑒𝑞⌉ more viewers than required. That
small margin is used to tolerate occasional small population loss.

2) 𝑁𝑚𝑎𝑥 = 𝑁𝑙𝑎𝑟𝑔𝑒 upon falling population. Δ̃𝑛(𝑡) < 0 indi-
cates a stage where more leading viewers leave than join. Upon
such a downtrend, 𝑁𝑚𝑎𝑥 is raised to 𝑁𝑙𝑎𝑟𝑔𝑒 so more viewers can be
added to the leading group (when next elastic piece arrives) to cope
with the ongoing population decrease. How much should 𝑁𝑙𝑎𝑟𝑔𝑒

be? An analogy to explain our intuition: if we want to minimize
the gasoline in our car, every time we reach a gas station, we add
only the necessary gasoline that barely supports us to reach next
station, where we will again add only necessary gasoline. Similarly,
to minimize the leading viewer population, every time an elastic
piece arrives, we reassign only necessary viewers from the lagging
group to the leading group, such that the leading viewer population
will just decrease to 𝑁𝑟𝑒𝑞 when next elastic piece arrives; then we
again reassign only necessary viewers, and repeat it. Thus,

𝑁𝑙𝑎𝑟𝑔𝑒 = 𝑁𝑟𝑒𝑞 + |Δ̃𝑛(𝑡) | ·𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (6)
where 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 denotes the remaining time before next elastic
piece arrives, so |Δ̃𝑛(𝑡) | · 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 is the estimated population
loss before next elastic piece arrives. As these viewers leave, 𝑁𝑙𝑎𝑟𝑔𝑒

viewers will become 𝑁𝑟𝑒𝑞 , and then be replenished in the arrived
elastic piece. Thus, the leading viewer population is maintained at
a minimal value but always above 𝑁𝑟𝑒𝑞 . We get 𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 as:

𝑇𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 =𝑚𝑎𝑥 (0, 𝑇𝑒𝑝 −𝑇𝑒𝑙𝑎𝑝𝑠𝑒𝑑 ) (7)
where 𝑇𝑒𝑝 (Section 4.1) is the interval between two adjacent elastic
pieces; 𝑇𝑒𝑙𝑎𝑝𝑠𝑒𝑑 is the time elapsed since the last elastic piece. Both
can be easily measured and obtained by the server.

More Analysis on𝑁𝑙𝑎𝑟𝑔𝑒 .𝑁𝑙𝑎𝑟𝑔𝑒 is adaptive, and increases with
|Δ̃𝑛(𝑡) | and 𝑇𝑒𝑝 according to (6) and (7). This is reasonable because
a larger |Δ̃𝑛(𝑡) | means a higher viewer leaving rate, and a larger
𝑇𝑒𝑝 means fewer replenishment chances. In either case, the leading
group should increase its capacity to get more viewers added to
the group during replenishment, such that the population will not
drop below 𝑁𝑟𝑒𝑞 before next replenishment chance arrives.

6 EVALUATION
Our evaluation consists of three parts. 1)We implement three Single-
VP and two Cross-VP algorithms for grouping based VP test, and
show that without 360BroadView’s viewer management, the system

cannot keep functioning. 2) We conduct user study and confirm that
our elastic piece based viewer reassignment is imperceptible. 3) We
evaluate 360BroadView’s maintenance performance and find that
even in the harshest test case it successfully maintains a minimal
yet necessary leading viewer population 97% of the time.

6.1 Demonstration of 360BroadView’s Necessity
6.1.1 Methodology. Viewport Trajectory Dataset.We have in-
vestigated many datasets [1, 3, 5, 8, 12, 13, 15, 20, 24], and decided
to use [24] to conduct emulation of live broadcast, because it is the
only one used by almost all existing works (Section 2.2).

Baseline & Metric. We implement three Single-VP algorithms
(linear regression, average prediction, and client navigation graph)
and two Cross-VP algorithms (server navigation graph denoted as
NG cross, and Flocking). All are introduced in Section 2.2. Viewers
keep leaving in real life; for clear demonstration, here we make
one leading viewer leave every 2 seconds (real viewer population
traces are used for test in Section 6.3). In the baseline cases, they
run without the aid of our viewer management. Each VP algorithm
predicts which tiles will appear in the viewer’s future viewport,
and we use 𝑟𝑒𝑐𝑎𝑙𝑙 = # 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑙𝑒𝑠 to measure performance.

6.1.2 Results. Fig. 4 shows the two Cross-VP algorithms’ perfor-
mances: without the aid of 360BroadView, both NG cross and Flock-
ing’s 𝑟𝑒𝑐𝑎𝑙𝑙 values decrease with time and at some point to 0, be-
cause they get fewer and fewer inputs as leading viewers leave.
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Figure 4: Recall of live broadcast VP wo/ & w/ 360BroadView.

With 360BroadView, the HBN viewers in the lagging group will
be reassigned to the leading group if some leading viewers leave.
And we see that both NG cross and Flocking now function properly
from beginning to end. It shows that 360BroadView plays a vitally
important role in grouping based live broadcast VP. We do not show
the three Single-VP algorithms’ performances because Single-VP is
not impacted by other viewers’ leaving.

6.2 User Study on Maintenance Imperceptibility
We test if viewers can notice any video jump in elastic pieces. We
recruit 15 participants (13 males and 2 females) and make them each
watch 3 videos (tennis, football and singing show). We have injected
two 5-second video forward jumps to each video beforehand, by
randomly picking two elastic pieces from each video and removing
5-second content from each elastic piece.
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The user study contains two phases. 1) We did not tell the par-
ticipants when each jump occurred and let them identify those
moments in the videos. No one succeeded in finding any jump
inserted by us. 2) Then we announced the moments and let the par-
ticipants carefully observe them; we also displayed the raw videos
to the participants as reference, and asked them if the jumps wors-
ened viewing experience. No one said yes. The user study confirms
that our elastic piece based viewer maintenance is imperceptible.

6.3 Evaluation on Maintenance Performance
6.3.1 Methodology. Baseline & Metrics. We compare two strate-
gies which determine the leading group capacity 𝑁𝑚𝑎𝑥 . The base-
line uses a fixed capacity ⌈1.1𝑁𝑟𝑒𝑞⌉; our solution uses an adaptive
one (Section 5). The metrics of maintenance performance are:

(1) 𝑁
𝑁𝑟𝑒𝑞

: the ratio of leading viewers’ actual population 𝑁 to the
required population 𝑁𝑟𝑒𝑞 . It measures an approach’s ability
to maintain a minimal leading viewer population. Smaller
𝑁

𝑁𝑟𝑒𝑞
is better because it means fewer leading viewers.

(2) 𝜏 =
𝑇 (𝑁<𝑁𝑟𝑒𝑞 )

𝑇𝑡𝑜𝑡𝑎𝑙
: the ratio of the time when 𝑁 < 𝑁𝑟𝑒𝑞 to the

total time of live broadcast. It measures an approach’s ability
to maintain a necessary leading viewer population. Smaller
𝜏 is better because 𝑁 < 𝑁𝑟𝑒𝑞 means leading viewers are too
few. E.g., in a 60-minute broadcast, if there are 6 minutes
when 𝑁 drops below 𝑁𝑟𝑒𝑞 , then 𝜏 = 10%.

Test Conditions. We have various test conditions. We make
𝑁𝑟𝑒𝑞 vary from 10 to 1000. As shown in Section 4.1, elastic pieces’
interval𝑇𝑒𝑝 is mostly < 10 min (for sports, singing shows, etc.); we
test this condition, and also a harsh condition 𝑇𝑒𝑝 = 30 min. The
combination of 𝑁𝑟𝑒𝑞 = 1000 and 𝑇𝑒𝑝 = 30 min is the harshest.

Viewer Population Trace. We do not find any trace regarding
how the number of 360◦ video live broadcast viewers varies with
time; we argue that P2P live streaming viewer population traces are
the best substitution. So we combine three P2P publications [9, 10,
22] and get the real 24-hour viewer population as the population of
HBN viewers (LBN viewers are irrelevant to viewer maintenance);
the data are self-repeated over days.

6.3.2 Results. Impact of 𝑁𝑟𝑒𝑞 . Fig. 5a and 5b show the impact of
𝑁𝑟𝑒𝑞 . When the fixed capacity is used, 𝑁

𝑁𝑟𝑒𝑞
drops from 109.9% to

105.7% as 𝑁𝑟𝑒𝑞 increases, because a larger 𝑁𝑟𝑒𝑞 means more leading
viewers need to be maintained, which is harder to achieve during a
population decrease. 𝜏 increases from 0 to 9.2%, i.e., in the worst
case, almost 10% of the time there are not enough leading viewers.

In contrast, when our adaptive capacity is used, 𝑁
𝑁𝑟𝑒𝑞

is always
close to 110% regardless of the 𝑁𝑟𝑒𝑞 value; it is slightly higher than
when the fixed capacity is used, because our solution dynamically
enlarges the capacity to accommodate more leading viewers when
detecting a population decrease. We see now 𝜏 increases with 𝑁𝑟𝑒𝑞

very slowly, reaching only 3.2% when 𝑁𝑟𝑒𝑞 = 1000. So, our solution
maintains a necessary leading viewer population 97% of the time.

Impact of 𝑇𝑒𝑝 . Fig. 5c and 5d show the impact of 𝑇𝑒𝑝 on 𝑁
𝑁𝑟𝑒𝑞

and 𝜏 . We see that 𝑁
𝑁𝑟𝑒𝑞

is around 108% and 𝜏 is around 1% for the
first three video categories regardless of using the fixed or adaptive
capacity. This is because when 𝑇𝑒𝑝 is small (sports and singing
shows have 𝑇𝑒𝑝 < 10 min), the leading group will have frequent,
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Figure 5: Impact of 𝑁𝑟𝑒𝑞 and 𝑇𝑒𝑝 on viewer maintenance.

small replenishment. Thus, the adaptive capacity becomes a small
value similar to the fixed capacity. The difference appears in the
harsh test where𝑇𝑒𝑝 is large (30 min): a large𝑇𝑒𝑝 means that elastic
pieces are infrequent and thus replenishment chances are fewer; the
adaptive capacity becomes a large value to contain more viewers,
such that the leading group can hold on till next replenishment
chance arrives. In contrast, when the fixed capacity is used, the
leading group cannot get enough viewers, resulting in a higher 𝜏 .

To sum up, the adaptive capacity and the fixed capacity have
remarkably different performances when 𝑁𝑟𝑒𝑞 and 𝑇𝑒𝑝 are both
large. Compared with the fixed capacity, the adaptive one uses
3.7% extra leading viewers but reduces 𝜏 by 64.3%, maintaining a
necessary leading viewer population 97% of the time.

7 CONCLUSION
In this paper, we design and evaluate 360BroadView, the first viewer
management approach to grouping based viewport prediction in
360◦ video live broadcast. Despite viewer churns in live broad-
cast, our viewer management maintains a necessary leading viewer
population such that the system can keep functioning; also it mini-
mizes the number of leading viewers to reduce network traffic. Our
evaluation shows that 360BroadView maintains the leading viewer
population at a minimal yet necessary level 97% of the time.
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