
360ViewPET: View Based Pose EsTimation for
Ultra-Sparse 360-Degree Cameras

Qian Zhou, Bo Chen, Zhe Yang, Hongpeng Guo and Klara Nahrstedt
Department of Computer Science, University of Illinois Urbana-Champaign

Email: {qianz, boc2, zheyang3, hg5, klara}@illinois.edu

Abstract—Immersive virtual tours based on 360-degree cam-
eras, showing famous outdoor scenery, are becoming more
and more desirable due to travel costs, pandemics and other
constraints. To feel immersive, a user must receive the view
accurately corresponding to her position and orientation in
the virtual space when she moves inside, and this requires
cameras’ orientations to be known. Outdoor tour contexts have
numerous, ultra-sparse cameras deployed across a wide area,
making camera pose estimation challenging. As a result, pose
estimation techniques like SLAM, which require mobile or dense
cameras, are not applicable. In this paper we present a novel
strategy called 360ViewPET, which automatically estimates the
relative poses of two stationary, ultra-sparse (15 meters apart)
360-degree cameras using one equirectangular image taken by
each camera. Our experiments show that it achieves accurate
pose estimation, with a mean error as low as 0.9 degree.

I. INTRODUCTION

Watching a video produced by a camera assigns us the view

at the camera’s position, making us virtually travel there. Mul-

tiple 360◦ cameras provide the views at multiple positions and

in arbitrary directions, and can be used for immersive virtual

tourism. Virtual tours are preferred to physical ones for those

constrained by time and travel costs or mobility impairments;

during pandemics, they become further appreciated due to

travel restrictions and social distancing.

Specifically, we envision a graph comprised of multiple

360◦ cameras which keep streaming 360◦ videos to the cloud:

each camera is a vertex which resembles a tour station; an

edge exists between two adjacent cameras with a line of sight

and it resembles a tour road. A user travels in the virtual space

along a tour route (i.e. a sequence of connected edges) which

is defined statically (e.g., travel companies plan professional

routes beforehand) or dynamically (e.g., tourists reach one

station and decide next stop). Ideally, a virtual tourist provides

the cloud with her virtual position (which spot of which

road) and orientation relative to the road, and receives the

corresponding view in real-time. Thus, our envisioned system

aims at new spatially-temporally immersive experience far

superior to that of a single 360◦ camera based system which

fixes user views at one position, and that of a prerecorded

image/video based system which fixes user views at one

moment (e.g., Google Street View [1] uses vehicles or people

called Trekkers to prerecord views, so user views have no

update or, at best, occasional update over time).

So back to our envisioned system. First, given a user’s

virtual position, it is easy for the cloud to find which camera

should be selected for user view generation. Second, the cloud

generates user view by cropping the camera’s 360◦ view to a

subview according to the user’s virtual orientation and field of

view (∼120◦). E.g., if she is virtually at Station A of Road A-

B with orientation 0◦, then Camera A’s 120◦ subview toward

the road forward will be her view.
However, the cropping step cannot be completed if the cloud

only has the user’s virtual position and orientation; cameras’

orientations relative to roads are indispensable (elaborated in

Section II-B). Camera poses can be manually measured at

installation by professional teams with instruments (e.g., in

urban planning), but it is cumbersome. Besides, camera pose

estimation is well studied in computer vision, particularly

using SLAM [2], [3], [4], but it requires mobile cameras which

record tens of frames per second while moving. Unfortunately,

in our outdoor tour contexts, cameras should be deployed on a

large scale, across a wide area to offer users rich scenery. Thus,

they are stationary, numerous and ultra-sparse (tens of meters

apart, elaborated in Section II-C). Since they are numerous,

manual measurement becomes a huge workload; and because

they are ultra-sparse, a SLAM strategy can get only 0.1

frame per second in average, and will fail. An automatic pose

estimation approach that works for ultra-sparse 360◦ cameras

is requisite, challenging and unexplored.
Realizing that the envisioned immersive virtual tourism

system requires a series of problems to be solved, in this

paper we take one step toward it by presenting 360ViewPET,

a strategy for automatic View based Pose EsTimation of ultra-

sparse 360◦ cameras. We only require each camera to upload

an equirectangular view to 360ViewPET running on the cloud,

which will find the relative poses of two cameras by searching

a hallmark pattern in their views; such pose information

is computed once (unless deployment changes), stored and

used over and over for user view generation. 360ViewPET

eliminates the need of manual measurement, thus essentially

simplifies the deployment of virtual tourism systems; also, it

achieves accurate pose estimation for 360◦ cameras which

are up to 15 m apart. To the best of our knowledge, no

existing visual pose estimation approach applies to such sparse

cameras. We claim our contributions as follows:

1) We propose 360ViewPET for pose estimation of two

360◦ cameras using one image taken by each. It uses

a novel vision based strategy which finds poses via

searching a hallmark pattern in cameras’ views, and

works for ultra-sparse cameras up to 15 m apart.

1

2021 IEEE International Symposium on Multimedia (ISM)

978-1-6654-3734-9/21/$31.00 ©2021 IEEE
DOI 10.1109/ISM52913.2021.00008

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
M

ul
tim

ed
ia

 (I
SM

) |
 9

78
-1

-6
65

4-
37

34
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IS
M

52
91

3.
20

21
.0

00
08

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

2) We additionally use multiple ways to dramatically re-

duce the hallmark pattern search space and improve ef-

ficiency. It shortens the time of one estimation operation

from tens of hours to 5 sec when running on a laptop.

3) We collect real data from 6 outdoor tour routes with 3

to 4 360◦ cameras, up to 15 m apart, deployed in each.

Our extensive experiments show that solutions based on

SLAM or image registration totally fail for such sparse

cameras, while 360ViewPET not only works but also

achieves a mean error as low as 0.9◦.

II. ASSUMPTIONS & PROBLEM DESCRIPTION

A. Tour Mode

We assume a graph comprised of numerous ultra-sparse

(tens of meters apart) 360◦ cameras (intrinsics are not needed)

streaming 360◦ videos to the cloud. Each camera is a vertex

resembling a tour station; an edge exists between two adjacent

cameras with a line of sight, and it resembles a tour road.

A user travels in the virtual space along a tour route (i.e. a

sequence of connected edges) made beforehand or on demand.

Our long-term goal is an immersive virtual tourism system

which detects a user’s position and orientation in the virtual

space, and presents her with the corresponding user view in

real-time. It aims at much higher immersion than existing

systems like Google Street View (more detail in the second

paragraph of Section I). In this paper, we assume that the user’s

virtual position (which spot of which road) is provided to the

cloud, so the cloud knows which camera should be selected

for user view generation. Her virtual orientation relative to

the road is also provided, and the cloud crops the camera’s

360◦ view to a subview based on her orientation and field

of view (FoV), getting her view. We show in Section II-B

that the cropping step cannot be completed without cameras’

orientations relative to roads. It justifies that our work—

camera pose estimation—is one of the many necessary steps

toward the immersive virtual tourism system.

B. Relation Between Camera’s 360◦ View and User View

Camera’s View. As shown in Fig. 1a, though a 360◦ camera

looks spherical, it also has a physical front and thus a

forward direction like a traditional camera. In this paper, a

360◦ camera’s orientation refers to its forward direction, and

is marked with a red arrow in figures.

Each 360◦ video frame is an equirectangular view whose x-

coordinate spans from 1◦ to 360◦ and y-coordinate from 1◦ to

180◦. An object’s coordinates in a camera’s view depend on

its position relative to the camera. E.g., those in the camera’s

forward direction appear in the middle of the view, with x-

coordinate 180◦; those in the backward, left, right direction

have x-coordinate 360◦, 90◦, 270◦. We show the universal

mapping relation as below, and as an example, the user is

assumed to be virtually at Camera A’s position:

1) Yaw. Fig. 1b shows the look of a camera pair A and

B seen from above, and the projections of four vectors on a

horizontal plane, including A’s orientation
−→
A , B’s orientation−→

B , the user’s orientation
−→
U , and the road direction

−−→
AB.

RightLeft
Forward Backward

1° 90° 270° 360°180°

Backward

Forward

RightLeft

180°

90° Equirectangular
View

(a) Camera’s 360◦ view.

ψA

ψB

Horizontal
Plane

ψU

(b) Seen from above.

θA θB

Vertical
Plane

θU

(c) Seen from right. (d) Seen from front.

Fig. 1: 360◦ camera’s view and yaw, pitch, roll.

Yaw ψA, ψB , ψU is the angle made by
−→
A ,

−→
B ,

−→
U with−−→

AB respectively. ψU is known (an assumption in Section II-A)

while the other two are unknown.

Map User Orientation to View (x-coordinates). Because−→
A and

−→
U have an angle difference ψA-ψU , the objects in the

user’s forward direction have x-coordinate 180◦+ψA-ψU in

A’s view; if a person’s horizontal FoV is denoted as FoVx

(∼120◦), the user view is the subview of A’s view with x-

coordinate 180◦+ψA-ψU±FoVx

2 . Thus, to get the user view,

ψA is required besides ψU (known). If the user is at Camera

B’s position, we replace ψA with ψB to find her view.

So ψA and ψB are needed. If the installer simply installs

cameras at planned locations without paying attention to their

orientations, ψA and ψB are independent and arbitrary values

in [1◦, 360◦]. We define Δψ=ψA-ψB . Note that estimating

(Δψ, ψB) is equivalent to estimating (ψA, ψB).

2) Pitch. Fig. 1c shows the look seen from right, and the

projections on the vertical plane where A and B coexist.

Pitch θA, θB , θU is the angle made by
−→
A ,

−→
B ,

−→
U with−−→

AB respectively. θU is known while the other two not.

Map User Orientation to View (y-coordinates). Because−→
A and

−→
U have an angle difference θU -θA, the objects in the

user’s forward direction have y-coordinate 90◦+θU -θA in A’s

view; if a person’s vertical FoV is denoted as FoVy (∼90◦),

the user view is the subview of A’s view with y-coordinate

90◦+θU -θA±FoVy

2 . If the user is at Camera B’s position, we

replace θA with θB to find her view.

So θA and θB are needed too. We define Δθ=θA-θB . Note

that estimating (Δθ, θB) is equivalent to estimating (θA, θB).

Theoretically, θA, θB can be arbitrary in [-90◦, 90◦].

Double Alignment. If
−→
A ,
−−→
AB have the same direction, and−→

B ,
−−→
AB have the same direction, i.e., Δψ=ψB=Δθ=θB=0◦, we

say the cameras are double aligned.

3) Roll. Fig. 1d shows the look seen from front, and a

2

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

camera’s orientation vector is perpendicular to the reader,

appearing as a red point. In this paper we assume that a camera

has no significant rotation around its orientation vector, which

is a common requirement and easily guaranteed in practice.

So far, we have shown that four pose angles (Δψ, ψB , Δθ,
θB) must be estimated for user view generation.

C. Problems and Challenges

In outdoor tour contexts, cameras should be deployed on a

large scale, across a wide area to offer users rich scenery. It

means that the cameras are:

1) numerous. Manually measuring numerous camera poses

is burdensome, so an automatic estimation approach is crucial.

2) ultra-sparse. Only ultra-sparse cameras (tens of meters

apart, like streetlights) can be widely deployed. SLAM does

not work in this case: it requires a mobile camera to record

10 to 30 frames per second while moving [2], [3], [4]; let’s

assume that the camera speed is 1.5 m/s (near humans’ typical

walking speed), then SLAM requires a frame every 5 to 15

cm; our camera distance is 15 m, at least 100 times sparser.

An automatic pose estimation approach that works for such

ultra-sparse 360◦ cameras is requisite but has not been studied.

III. 360VIEWPET OVERVIEW

360ViewPET takes VA and VB—the 360◦ equirectangular

views of a camera pair A and B (tens of meters apart with

a line of sight)—as input, and outputs the pose angles (Δψ,

ψB , Δθ, θB) of A and B.

It estimates (Δψ, ψB , Δθ, θB) based on the fact that a

hallmark pattern of feature correspondences will appear in the

overlay of VA and VB iff A and B are double aligned, i.e. (Δψ,

ψB , Δθ, θB) = (0◦, 0◦, 0◦, 0◦). Also, note that by rotating

VA and VB using (Δψ′, ψB
′, Δθ′, θB ′), we can get the views

of a new camera pair A′ and B′ whose pose angles are (Δψ-

Δψ′, ψB-ψB
′, Δθ-Δθ′, θB-θB

′). Specifically,

1) 360ViewPET rotates VA and VB using N different (Δψ′
i,

ψB
′
i, Δθ′i, θB

′
i) combinations, i = 1, 2, . . . , N , getting

the views of N different A′
i and B′

i pairs whose pose

angles are (Δψ-Δψ′
i, ψB-ψB

′
i, Δθ-Δθ′i, θB-θB

′
i).

2) For each A′
i and B′

i, 360ViewPET detects if the hallmark

pattern appears in their view overlay. Assume that A′
k

and B′
k have the pattern, then we know they are double

aligned, i.e. (Δψ-Δψ′
k, ψB-ψB

′
k, Δθ-Δθ′k, θB-θB

′
k) =

(0◦, 0◦, 0◦, 0◦). Then (Δψ′
k, ψB

′
k, Δθ′k, θB

′
k) are output

as the estimated values of (Δψ, ψB , Δθ, θB).

3) 360ViewPET also involves strategies to reduce N , short-

ening the time of pose estimation without accuracy loss.

In the following sections, we introduce the hallmark pattern

and its detection, and then elaborate 360ViewPET’s workflow.

IV. HALLMARK PATTERN OF DOUBLE ALIGNMENT

A hallmark pattern of feature correspondences will appear

in the overlay of VA and VB iff Camera A and B are double

aligned. Thus, if the pattern is detected, we know the four

pose angles of A and B are all 0◦.

A. Cameras’ Views When Double Aligned

First we introduce a special visual phenomenon when

cameras are double aligned. Imagine that a person physi-

cally moves from Camera A’s position to B’s position along−−→
AB and faces the direction of

−−→
AB, then:

1) the objects in front of her will expand in her eyes;

2) the objects behind her will contract to her;

3) those to her exact left or right will move parallel to her.

If Camera A and B face the direction of
−−→
AB (i.e. double

aligned), then A resembles the person before moving, and

B resembles her after moving. Thus the visual phenomenon

will appear in VA and VB (Fig. 2): object expansion in the

middle (x-coordinate: 180◦); contraction on the left and right

margins (x: 0◦ and 360◦); parallel movement between the

middle and margins (x: 90◦ and 270◦).

Fig. 2: Cameras’ views when double aligned.

B. Feature Correspondences When Double Aligned

Feature Arrow (FA). Feature detection (e.g., SURF [5],

ORB [6]) and matching techniques automatically detect fea-

tures in two images and pair the corresponding ones. A feature

arrow (FA) is defined as an arrow (denoted as −−−→pApB) drawn

in the overlay of VA and VB , with its start point pA (marked

with ◦) at a feature in VA and end point pB (marked with +)

at the corresponding feature in VB (Fig. 3). Like a vector, an

FA’s angle is the one it makes with the positive x-axis.

Fig. 3: Feature arrow in view overlay.

Hallmark FA. The visual phenomenon corresponds to the

FA pattern in Fig. 4, called the hallmark pattern of double
alignment. An FA matching this pattern is a hallmark FA:

1) View expansion. FA −−−→pApB radiates outward from the

middle center pC (i.e., ∠−−−→pApB ≈ ∠−−−→pCpA), if xA (pA’s

x-coordinate) is near 180◦.

2) View contraction. −−−→pApB radiates inward to the left

margin center pL (i.e., ∠−−−→pApB ≈ ∠−−−→pApL), if xA is near

0◦; it radiates inward to the right margin center pR (i.e.,

∠−−−→pApB ≈ ∠−−−→pApR), if xA is near 360◦.

3

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

3) Parallel movement. −−−→pApB is left (angle: 180◦) if xA is

near 90◦, and right (angle: 0◦) if xA is near 270◦.

0 90 180 270 360
X (deg)

45

90

135

Y
 (

d
eg

)

p
C

p
L

p
R

Fig. 4: Hallmark pattern of double alignment. ◦: pA, +: pB .

As for an FA with xA ∈ (180◦, 270◦), its angle should be

a weighted mean of ∠−−−→pCpA and 0◦. And the closer it is to

the center pC , the more weight is given to ∠−−−→pCpA. A similar

rule applies to FAs with xA ∈ (0◦, 90◦), (90◦, 180◦), (270◦,

360◦). We find that a simple linear interpolation works well

enough. The general formula of a hallmark FA’s angle α is:

α =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1− λ) · ∠−−−→pApL + λ · 180◦ if 0◦ ≤ xA < 90◦

(1− λ) · 180◦ + λ · ∠−−−→pCpA if 90◦ ≤ xA < 180◦

(1− λ) · ∠−−−→pCpA + λ · 0◦ if 180◦ ≤ xA < 270◦

(1− λ) · 0◦ + λ · ∠−−−→pApR if 270◦ ≤ xA < 360◦
(1)

λ =
xA mod 90◦

90◦
(2)

λ is a weight increasing from 0 to 1 as xA increases from

the left endpoint to the right endpoint, in interval [0◦, 90◦),

[90◦, 180◦), [180◦, 270◦) or [270◦, 360◦).

V. 360VIEWPET WORKFLOW

As introduced in Section III, Camera A and B have un-

known pose angles (Δψ, ψB , Δθ, θB), and 360ViewPET aims

to find those angles based on their view VA and VB .

Assume that there are N different (Δψ′
i, ψB

′
i, Δθ′i, θB

′
i)

combinations (see combination selection in Section V-C), i =
1, 2, . . . , N . For each combination, 360ViewPET:

1) rotates A and B using the combination, getting the views

and FAs of a new camera pair A′
i and B′

i whose pose

angles are (Δψ-Δψ′
i, ψB-ψB

′
i, Δθ-Δθ′i, θB-θB

′
i);

2) counts the number of hallmark FAs.

The camera pair with the most hallmark FAs is regarded

as double aligned. Assume that the pair is A′
k and B′

k, then

we know (Δψ-Δψ′
k, ψB-ψB

′
k, Δθ-Δθ′k, θB-θB

′
k) = (0◦, 0◦,

0◦, 0◦). Finally, (Δψ′
k, ψB

′
k, Δθ′k, θB

′
k) are output as the

estimated values of (Δψ, ψB , Δθ, θB).

A. Obtain Feature Arrows

Search Space. We first focus on introducing functionality,

and temporarily use a huge 4D search space: because Δψ,

ψB ∈ [1◦, 360◦] and Δθ, θB ∈ [-90◦, 90◦] (Section II-B),

every (Δψ′, ψB
′, Δθ′, θB

′) combination in [1◦, 360◦]2×[-

90◦, 90◦]2 is tried. Our search granularity is 1◦, so all the

four are integers. Under this condition, N ≈ 4 billion.

Given a (Δψ′, ψB
′, Δθ′, θB ′) combination, we need to get

the views of Camera A′ and B′ whose pose angles are (Δψ-

Δψ′, ψB-ψB
′, Δθ-Δθ′, θB-θB

′). But instead of physically

rotating A and B by Δψ′+ψB
′, ψB

′ horizontally and Δθ′+θB ′,
θB

′ vertically, which is unfeasible or burdensome in practice,

we just need to rotate the cameras’ views—VA and VB .

Horizontal Rotation. To get the view of a camera physi-

cally rotated right by ψ′, we just need to rotate the original

view left by ψ′. Specifically, the original view’s subview with

x-coordinate [1◦, ψ′] is cut and appended to the right margin.

Since 1◦ and 360◦ are adjacent, the new view is seamless.

Vertical Rotation. If a camera physically rotates down by

θ′, the objects in front of it will move up by θ′ in its view

while those behind it will move down by θ′.
Feature Detection & Matching. Recall that it is FAs that

are used for finding double alignment. There are two ways

to get the FAs of a camera pair’s views. 1) rotate and detect:

for each (Δψ′, ψB
′, Δθ′, θB

′) combination, we rotate VA,

VB accordingly to get new views, then call a feature detection

and matching algorithm to get FAs. 2) detect and rotate: we

call a feature detection and matching algorithm to get the FAs

of the original VA, VB for only once before the search starts,

and for each combination, we just rotate the feature points

accordingly to get new FAs. The first strategy needs feature

detection and matching to be called for every test; the second

strategy constantly needs one, so we use this way.

B. Count Hallmark Feature Arrows

Given a set of FAs, we need to count how many of them

match the hallmark pattern of double alignment in Fig. 4. An

FA is regarded as a hallmark one if the difference between its

angle and the hallmark FA angle α (Formula (1)) is less than

a threshold THα (e.g., 20◦, see evaluation in Section VI-C).

Once the two steps above are performed for all the com-

binations, the combination leading to the most hallmark FAs

becomes known. Since it makes the hallmark pattern most

obvious, it is regarded to have made a double aligned camera

pair. Fig. 5a shows an example of the number of hallmark

FAs when traversing Δψ′ and ψB
′ (with fixed Δθ′ and θB

′).
We see a remarkable peak: the double alignment state results

in many more hallmark FAs than unaligned states, thus the

detection of it is easy and accurate.

(a) Count hallmark FAs.

F
ψAψA

ψB

B

L

R
(b) Image registration.

Fig. 5: Count hallmark feature arrows & reduce search space.

4

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

C. Reduce Search Space

There are N ≈ 4 billion (Δψ′, ψB
′, Δθ′, θB ′) combinations

in [1◦, 360◦]2×[-90◦, 90◦]2, and a brute-force 4D search

is unacceptably slow. To speed it up, we tried to use only

a subset of randomly selected combinations, or probabilistic

algorithms like simulated annealing, but they cannot always

find the optimal combination that leads to the most hallmark

FAs. Here we introduce how to reduce N by ∼20k times

without missing the optimal combination, then a brute-force

search can be used to find the combination quickly.

Approach for Δψ and Δθ Scope Reduction. Δψ=ψA-

ψB is the yaw difference of two cameras, and can be any

value in [1◦, 360◦]. To narrow down its scope, one may think

of paying some attention during camera deployment, to make

A and B roughly face the same direction (e.g., north) so later

we only need to search Δψ around 0◦. This requires extra

equipment (e.g., magnetometer) and non-negligible manual

work. Instead, our strategy is to use image registration to find

the rough values of Δψ and Δθ first, denoted as Δψ̃, Δθ̃.

If Δψ̃, Δθ̃ have a max error of ε, then 360ViewPET only

needs to search Δψ, Δθ in [Δψ̃-ε, Δψ̃+ε], [Δθ̃-ε, Δθ̃+ε].
Our experiments in Section VI-B show that ε < 5◦.

Image registration [7] automatically discovers the corre-

spondences (e.g., using feature matching) of images which

capture the same scene from different viewports, and properly

stitches them. E.g., based on feature matching, if an object is

found to appear in both VA and VB , and with x-coordinate xA

and xB respectively, it implies that VA should be shifted left

by an offset Δx=xA-xB and stitched to VB .

Δx is useful to us because it roughly equals Δψ. As

illustrated in Fig. 5b, an object F in front of
−−→
AB will appear in

VA with xA=180◦+ψA and in VB with xB=180◦+ψB , thus xA-

xB=ψA-ψB , i.e. Δx=Δψ. It is also true if a backward object

B is used. However, it can be easily proved (details omitted

due to space limitation) that a left object L has Δx > Δψ
and a right object R has Δx < Δψ. So they are not always

equal and Δψ cannot be accurately obtained.

Facing this issue, we evenly cut VA and VB to multiple

patches horizontally; for each patch we compute a Δx, and

use their mean as a guess of Δψ. The intuition is that a

left object’s overestimated Δψ will cancel out a right object’s

underestimated Δψ to some degree, reducing the error.

Approach 2 for Δθ Scope Reduction. Here is another way

to narrow down Δθ scope besides image registration: if each

camera’s orientation vector is made roughly horizontal to the

ground during deployment (actually people spontaneously do

it in practice), then Δθ will be close to 0◦, and searching

it in [-2◦, 2◦] is mostly sufficient. Note that making cameras

roughly horizontal is significantly easier and more natural than

making them all face north, so scope reduction via conscious

camera deployment is suitable for Δθ but not Δψ.

Approach for θB Scope Reduction. If A and B both have

horizontal orientations, then θB=arctan(hd) where d is their

location distance and h is height difference. In our context,

two cameras are at most 15 m apart, and drastic ground height

changes are not likely to happen within such a distance. When

d = 15 m and θB ∈ [-5◦, 5◦], we have h ∈ [-1.3m, 1.3m]. It

means that searching θB ∈ [-5◦, 5◦] can make A find and get

double aligned with a B which is 1.3 m higher or lower than

it. This should suffice most cases in practice.

Summary. With these techniques and heuristics, we can

reduce the overall search number from N = 3602 × 1802

(above 4 billion) to 11× 360× 5× 11 (∼200k, with ε = 5◦,

Δθ ∈ [-2◦, 2◦], θB ∈ [-5◦, 5◦]), by ∼20k times.

VI. EVALUATION

We conduct extensive experiments to evaluate our 360View-

PET and two existing approaches of camera pose estimation,

using real data collected from 360◦ cameras which are 15 m

apart. As shown in Table I, we find that: SLAM totally fails

for such sparse cameras; image registration only works out

two pose angles; 360ViewPET solves all the four angles, with

an overall mean error as low as 0.9◦.

TABLE I: Pose estimation performance comparison.

SLAM ImageRegistration 360ViewPET

Error of Δψ, Δθ N/A 1.7◦, 0.8◦ 0◦, 0.8◦
Error of ψB , θB N/A N/A 0.9◦, 1.9◦

Settings. We collect data from RICOH THETA 360◦ cam-

eras in 6 outdoor tour routes. The first 4 tours have 4 cameras

each, deployed along a straight line (some are north-south and

others are east-west), hence 3 adjacent camera pairs (C1-C2,

C2-C3, C3-C4, all are 15 m apart). The last 2 tours have 3

cameras each, located on the vertices of a triangle, also 3

adjacent camera pairs (C4-C2, C2-C3, C3-C4). Therefore, we

have 18 diverse test cases with different objects in different

directions. Additionally, we manipulate the data by removing

some FAs from them, to generate more and harsher test cases.

For each case, we denote the first camera as A and the

second as B, and two synchronized frames VA, VB are

extracted from the videos of A and B respectively. Each frame

has 3840×1920 pixels, for horizontal [1◦, 360◦] and vertical

[1◦, 180◦]. We only use the vertical pixels in [45◦, 135◦] for

pose estimation because others are near polar and distorted, so

a cropped frame spans 360◦ horizontally and 90◦ vertically.

A. Qualitative Evaluation of 360ViewPET

We use the example below to demonstrate the effect and

result of 360ViewPET. Fig. 6a shows the initial views of A and

B; they are unaligned and only 55 hallmark FAs in their view

overlay are found (Fig. 6b). 360ViewPET tries different (Δψ′,
ψB

′, Δθ′, θB ′) combinations, and when using (263◦, 290◦, 0◦,

0◦), the views are better aligned (Fig. 7a) and the number

of hallmark FAs rises to 170 (Fig. 7b). The best aligned

views (Fig. 8a) and the most hallmark FAs (Fig. 8b) appear

when (258◦, 285◦, 0◦, 0◦) are used, so they are output as the

estimated pose angles. The ground truth pose angles are (258◦,

284◦, 2◦, -1◦), very close to the output.

5

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

(a) Initial view VA and VB .

(b) 55 hallmark (green) FAs in view overlay; yellow FAs are non-hallmark.

Fig. 6: Initially unaligned cameras.

(a) Views when (Δψ′, ψB
′, Δθ′, θB ′) = (263◦, 290◦, 0◦, 0◦).

(b) 170 hallmark (green) FAs in view overlay; yellow FAs are non-hallmark.

Fig. 7: Near double aligned cameras.

B. Quantitative Evaluation of Existing Approaches

SLAM. We use our 360◦ dataset to test OpenVSLAM [4],

which is claimed to be the first open-source visual SLAM

framework that can accept equirectangular imagery. The dis-

tance between two cameras is 0.05, 0.15, 0.5, 1.5, 5, 15 m,

corresponding to frame rate 30, 10, 3, 1, 0.3, 0.1 FPS respec-

tively. Fig. 9a shows the number of landmarks and keyframes

that are recognized for map construction. We normalize the

data and make the numbers be 100% when the frame rate is

30 FPS (5 cm). We see that the numbers rapidly deteriorate as

the camera distance increases. SLAM strategies mostly use 10

to 30 FPS (camera distance 5 to 15 cm) [2], [3], [4]. When the

distance is 15 m, no landmark or keyframe can be recognized

at all, leading to an empty map, so the strategy totally fails to

work for ultra-sparse cameras.

Image Registration. As explained in Section V-C, VA and

VB are cut into multiple patches (here we use 12), a Δx is

computed for each patch, and their mean is used as a guess of

Δψ. Besides, RANSAC is used for outlier FA elimination. It

(a) Views when (Δψ′, ψB
′, Δθ′, θB ′) = (258◦, 285◦, 0◦, 0◦).

(b) 252 hallmark (green) FAs in view overlay.

Fig. 8: Double aligned cameras.

Camera Distance (m)

N
u

m
b

er
 (

%
) keyframe

landmark

(a) SLAM.

E
rr

o
r

(d
eg

)

(b) Image registration.

Fig. 9: Existing approaches fail for ultra-sparse cameras.

works out Δψ (mean error 1.7◦; max error 4.4◦) and Δθ (mean

error 0.8◦; max error 2.3◦), but not ψB or θB (Fig. 9b).

C. Quantitative Evaluation of 360ViewPET

Since the image registration technique’s output Δψ̃ has

max error 4.4◦, 360ViewPET only needs to search (Δψ, ψB ,

Δθ, θB) in [Δψ̃-5◦, Δψ̃+5◦]×[1◦, 360◦]×[-2◦, 2◦]×[-5◦, 5◦]

(Section V-C). It has mean error (0◦, 0.9◦, 0.8◦, 1.9◦) and max

error (0◦, 2◦, 2◦, 4◦) for the four angles, with an overall mean

error and max error as low as 0.9◦ and 2◦ respectively.

Impact of Threshold THα. Fig. 10a shows the impact of

THα, the threshold of detecting hallmark FAs (Section V-B).

A too small threshold (e.g., 10◦) makes many hallmark FAs

detected as non-hallmark; a too large threshold (e.g., 25◦)

makes many non-hallmark FAs detected as hallmark. Both lead

to pose estimation with low accuracy. We find that 15◦ and

20◦ result in small errors in all the four angles.

Fig. 10b shows the detailed results for THα= 20◦: mean

error (0◦, 0.9◦, 0.8◦, 1.9◦) and max error (0◦, 2◦, 2◦, 4◦). We

notice that Δψ is more accurate than Δθ, so is ψB than θB .

This is because our method performs estimation based on FAs

in cropped VA and VB , which span 360◦ horizontally but only

90◦ vertically. Thus estimating yaw related angles (ψA, ψB ,

6

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

E
rr

o
r

(d
eg

)

TH =10

TH =15

TH =20

TH =25

(a) Impact of THα.
E

rr
o

r
(d

eg
)

(b) Detailed error distribution.

Fig. 10: Estimation error of 360ViewPET.

Δψ) has more FAs to use than estimating pitch related angles

(θA, θB , Δθ), and is more accurate.

Impact of Tour Route. Fig. 11 shows the errors for each

of the 18 test cases (note that Δψ is always 0◦, thus not

shown). Cameras are deployed along a north-south straight

line in Case 1–6 and east-west in Case 7–12 and on triangle

vertices in Case 13–18. We do not find a remarkable impact

of tour routes on pose estimation accuracy, which implies that

360ViewPET is fairly stable in different situations.

Test Case ID

E
rr

o
r

(d
eg

) B B

(a) Linear tour.

Test Case ID

E
rr

o
r

(d
eg

) B B

(b) Linear tour.

Test Case ID

E
rr

o
r

(d
eg

) B B

(c) Triangular tour.

Fig. 11: Different tours have similar estimation accuracy.

More and Harsher Test Cases. The 18 tour cases we

have tested have three buildings of interest in the scenes and

they provide FAs for pose estimation. A critical question is

how well 360ViewPET can work in scenes with fewer FAs

available (e.g., occlusion, fewer objects around, objects with

poor features). To study this, we add different FA masks

to our current VA and VB , removing some FAs from them

and making pose estimation harder. In this way we generate

more and harsher test cases than the 18 ones. Specifically, a

mask applying to the forward, backward, left, right direction

will remove those FAs with x-coordinates between 180◦±45◦,

360◦±45◦, 90◦±45◦, 270◦±45◦, respectively. We also test the

cases where two directions have no FAs.

Mask Features in

E
rr

o
r

(d
eg

)

Fig. 12: More and harsher test cases.

Fig. 12 shows the overall error of cases where the FAs

in zero, one or two directions are missing. As is seen, the

error increases from 0.9◦ to 1.3◦ when the FAs in the left are

removed, and to 2.7◦ when those in the forward direction are

removed. The influence of no right FA is similar to that of

no left FA, and no backward FA is similar to no forward

FA, so the two results are omitted here. We can see that

the absence of left/right FAs has less impact on the accuracy

than that of forward/backward FAs. Since left/right FAs make

less contrition than forward/backward ones, we expect that if

masks are used on two directions, the error will be: masking

left+right < masking front+left < masking front+back. This

is congruent with Fig. 12: the three situations have an error of

1.4◦, 4◦and 4.5◦, respectively. It is good to see that even in a

case with no FA in two directions, the error is still small.
Impact of Feature Detection Algorithm. Fig. 13a shows

the performances of four famous feature detectors: KAZE [8],

BRISK [9], SURF [5], ORB [6]. They have similar overall

mean errors: 0.9◦, 1.3◦, 1.2◦, 1.8◦. But the differences in max

errors are remarkable: 2◦, 3◦, 4◦, 9◦. KAZE is recommended

from the aspect of estimation accuracy.

E
rr

o
r

(d
eg

) mean max

(a) Feature detection algorithm.

E
rr

o
r

(d
eg

)
(b) Search strategy.

Fig. 13: Impact of other factors.

Impact of Search Strategy. Fig. 13b shows the perfor-

mances of three search strategies. Fine search means ex-

hausting every (Δψ, ψB , Δθ, θB) combination in [Δψ̃-5◦,

Δψ̃+5◦]×[1◦, 360◦]×[-2◦, 2◦]×[-5◦, 5◦]; coarse-fine search

performs fine search for Δψ, Δθ, θB , but searches ψB in

[1◦, 360◦] with a granularity of 5◦ first to find its rough

value, then fine searches it in ±4◦ around the rough value;

independent search first fixes Δθ, θB at 0◦ and searches Δψ,

ψB in [Δψ̃-5◦, Δψ̃+5◦]×[1◦, 360◦], then fixes Δψ, ψB at

the found values and searches Δθ, θB in [-2◦, 2◦]×[-5◦, 5◦].

Though coarse-fine and independent searches are faster than

fine search, they have much larger max errors (5.2◦ and 8◦)

than fine search’s 2◦. We use fine search.
Time Cost. Search space reduction shortens the pose es-

timation time for a camera pair from tens of hours to 5 sec

in average (by ∼20k times), when running with MATLAB

on a laptop (2.7GHz CPU, 32GB RAM) using no GPU. If

implemented using C/C++ or run on a server, it is reasonable

to expect the time to be within 1 sec. Also, note that pose

information is computed offline once (unless camera deploy-

ment changes), then stored in the cloud, and used repeatedly

for user view generation. So taking seconds long is fine.

7

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

VII. RELATED WORK

6DoF Video System. A single 360◦ camera system only

has 3 rotational DoF; 6DoF (plus 3 translational DoF) requires

multiple cameras. One type of 6DoF systems [10], [11], [12],

[13] consists of sparsely deployed cameras which keep upload-

ing live views, and a user can continuously change her view

from one camera to another to virtually travel. 360ViewPET

is related to this type, but studies camera pose estimation, a

topic which has not been studied in these systems. Google

Street View [1] uses prerecorded views, which is less relevant

to immersive virtual tours and our work.

Another type of 6DoF systems [14], [15], [16] is based

on depth image based rendering. They use a dense camera

constellation (e.g., in [15] 16 cameras form a 1 m diameter

rig) and target contexts where user motion is head-scale (e.g.,

in virtual conferences). They are inapplicable to our contexts:

virtual outdoor tours across a wide area.

Image Registration. Image registration [7] discovers the

correspondences of images capturing the same scene from

different viewports or at different times and properly stitches

them. Template matching is preferred for image registration

when the images are rich of distinctive colors; feature detec-

tion (e.g., ORB [6]) is recommended when the images have

distinctive shapes. Unlike 360ViewPET, image registration can

estimate Δψ and Δθ, but not ψB or θB .

Visual Based Localization (VBL). 360ViewPET belongs

to VBL which recovers the poses of cameras based on the

photos they took. Some VBL work [17], [18], [19] requires

coarse camera intrinsics or extrinsics (e.g., from photo EXIF

tags, GPS or magnetometer) as a prior, but 360ViewPET does

not. New solutions [20] based on deep learning are proposed;

unlike them, 360ViewPET needs no training.

Simultaneous Localization and Mapping (SLAM). SLAM

also belongs to VBL, and has been significantly studied.

Classical work (e.g., PTAM [2], ORB-SLAM [3]) applies to

planar images, and new approaches [4], [21], [22] extend to

spherical images, but they have the same drawback—require

mobile cameras which record tens of frames per second while

moving. However, we have ultra-sparse cameras and the frame

rate is only 0.1 FPS in average, making SLAM totally fail.

360ViewPET works well despite such sparse cameras.

VIII. CONCLUSION

Camera pose estimation is a necessary step toward video-

based immersive virtual tourism. In this paper, we present

the design and evaluation of 360ViewPET, a strategy which

automatically finds the relative poses of two 360◦ cameras

(up to 15 m apart) using one equirectangular image taken by

each camera, with a mean error as low as 0.9◦. It is the only

approach we know so far that works for such sparse cameras

and applies to virtual outdoor tours across a wide area.

ACKNOWLEDGMENT

This research was funded by the National Science Founda-

tion CNS 1900875, by the Postdoctoral Fellowship Program at

CS UIUC and by the Grainger College of Engineering funding.

The presented views in the article are of the authors and do

not represent the views of the funding organizations.

REFERENCES

[1] D. Anguelov, C. Dulong, D. Filip, C. Frueh, S. Lafon, R. Lyon, A. Ogale,
L. Vincent, and J. Weaver, “Google street view: Capturing the world at
street level,” Computer, vol. 43, no. 6, pp. 32–38, 2010.

[2] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE, 2007, pp. 225–234.

[3] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “Orb-slam: a versatile
and accurate monocular slam system,” IEEE transactions on robotics,
vol. 31, no. 5, pp. 1147–1163, 2015.

[4] S. Sumikura, M. Shibuya, and K. Sakurada, “Openvslam: a versatile
visual slam framework,” in Proceedings of the 27th ACM International
Conference on Multimedia, 2019, pp. 2292–2295.

[5] H. Bay, T. Tuytelaars, and L. Van Gool, “Surf: Speeded up robust
features,” in European conference on computer vision. Springer, 2006,
pp. 404–417.

[6] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International conference on computer
vision. Ieee, 2011, pp. 2564–2571.

[7] B. Zitova and J. Flusser, “Image registration methods: a survey,” Image
and vision computing, vol. 21, no. 11, pp. 977–1000, 2003.

[8] P. F. Alcantarilla, A. Bartoli, and A. J. Davison, “Kaze features,” in
European Conference on Computer Vision. Springer, 2012, pp. 214–
227.

[9] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in 2011 International conference on com-
puter vision. Ieee, 2011, pp. 2548–2555.

[10] X. Corbillon, F. De Simone, G. Simon, and P. Frossard, “Dynamic
adaptive streaming for multi-viewpoint omnidirectional videos,” in Pro-
ceedings of the 9th ACM Multimedia Systems Conference, 2018, pp.
237–249.

[11] H. Pang, C. Zhang, F. Wang, J. Liu, and L. Sun, “Towards low latency
multi-viewpoint 360 interactive video: A multimodal deep reinforcement
learning approach,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 991–999.

[12] T. Maugey, L. Guillo, and C. L. Cam, “Ftv360: a multiview 360° video
dataset with calibration parameters,” in Proceedings of the 10th ACM
Multimedia Systems Conference, 2019, pp. 291–295.

[13] K. K. Sreedhar, I. D. Curcio, A. Hourunranta, and M. Lepistö, “Immer-
sive media experience with mpeg omaf multi-viewpoints and overlays,”
in Proceedings of the 11th ACM Multimedia Systems Conference, 2020,
pp. 333–336.

[14] J. Huang, Z. Chen, D. Ceylan, and H. Jin, “6-dof vr videos with a
single 360-camera,” in 2017 IEEE Virtual Reality (VR). IEEE, 2017,
pp. 37–44.

[15] A. P. Pozo, M. Toksvig, T. F. Schrager, J. Hsu, U. Mathur, A. Sorkine-
Hornung, R. Szeliski, and B. Cabral, “An integrated 6dof video camera
and system design,” ACM Transactions on Graphics (TOG), vol. 38,
no. 6, pp. 1–16, 2019.

[16] M. Broxton, J. Flynn, R. Overbeck, D. Erickson, P. Hedman, M. Duvall,
J. Dourgarian, J. Busch, M. Whalen, and P. Debevec, “Immersive light
field video with a layered mesh representation,” ACM Transactions on
Graphics (TOG), vol. 39, no. 4, pp. 86–1, 2020.

[17] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism: exploring photo
collections in 3d,” in ACM siggraph 2006 papers, 2006, pp. 835–846.

[18] C. Arth, C. Pirchheim, J. Ventura, D. Schmalstieg, and V. Lepetit,
“Instant outdoor localization and slam initialization from 2.5 d maps,”
IEEE Computer Architecture Letters, vol. 21, no. 11, pp. 1309–1318,
2015.

[19] B. Zeisl, T. Sattler, and M. Pollefeys, “Camera pose voting for large-
scale image-based localization,” in Proceedings of the IEEE Interna-
tional Conference on Computer Vision, 2015, pp. 2704–2712.

[20] Y. Shavit and R. Ferens, “Introduction to camera pose estimation with
deep learning,” arXiv preprint arXiv:1907.05272, 2019.

[21] X. X. Zhu, Y. Yu, P. F. Wang, M. J. Lin, H. R. Zhang, and Q. X.
Cao, “A visual slam system based on the panoramic camera,” in 2019
IEEE International Conference on Real-time Computing and Robotics
(RCAR). IEEE, 2019, pp. 53–58.

[22] Y. Zhang and F. Huang, “Panoramic visual slam technology for spherical
images,” Sensors, vol. 21, no. 3, p. 705, 2021.

8

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:42:05 UTC from IEEE Xplore. Restrictions apply.

