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Abstract—The proliferation and daily congregation of modern
mobile devices have created abundant opportunities for peer edge
devices to share valuable data with each other. The short contact
durations, relatively small sharing sizes, and uncertain data
availability, demand agile, light weight peer based data sharing.
In this paper, we propose Peer Data Sharing (PDS) that enables
edge devices to discover which data exist in nearby peers, and
retrieve interested data robustly and efficiently. PDS uses novel
lingering queries, mixedcast and en-route message rewriting
techniques to minimize redundant transmissions and maximize
opportunistic overhearing thus caching in data discovery and
retrieval. Extensive evaluations based on an Android prototype
show that PDS discovers and retrieves almost 100% data in
tens of seconds, and remains robust despite wireless contention,
simultaneous consumer requests and user mobility.

Index Terms—Peer Data Sharing; Mobile Sensing; Data Dis-
covery; Data Retrieval;

I. INTRODUCTION

The proliferation of modern sensor-rich mobile devices

(e.g., smartphones) and opportunistic congregation of users

have created novel opportunities for peer data sharing. Many

times spontaneous, agile data exchange among nearby users is

desired. For example, during large outdoor events (e.g., music

festivals, university commencements), smartphones carried by

people can capture diverse data, including human activities,

their locations, and image/video clips. When shared among

peer devices, such data can help people avoid food stands of

long lines, discover interesting souvenirs and artifacts, or enjoy

images, video clips of special, memorable moments.

Peer data sharing in such pervasive edge environments has

some unique characteristics. Each user may possess certain

data and need data by others. However, which devices are

around, and what kinds of data they carry, occur opportunisti-

cally and cannot be foretold. The limited durations (e.g., a few

to tens of minutes) devices are in proximity, and the modest

amount yet unforeseeable kinds of data, stipulate fast, light

weight discovery and exchange on a peer basis. This decentral-

ized sharing differs from most crowdsensing [1] applications

where a central backend receives data from all devices and

then distributes among them. A dedicated backend demands

significant monetary, operational costs and overheads in its

development, deployment and maintenance. If peer mobile

devices can discover and retrieve desired data collaboratively,

such costs and overheads are eliminated. 1

1Some popular apps provide sharing (e.g., SHAREit [2]) but only between
two neighbors and requires manual discovery and retrieval.

We propose Peer Data Sharing (PDS) that enables mobile

devices to quickly discover what data exist in nearby peers

and retrieve desired data from possibly multiple devices. PDS

achieves robust, efficient and timely data discovery and re-

trieval, despite the dynamic and uncertain environment where

nodes may move in/out and data appear or disappear (created,

deleted or carried away) frequently. It discovers all existing

data and retrieve required data faithfully across opportunis-

tically gathered peers, under limited wireless bandwidth and

potentially frequent message losses, with low overhead and

latency.
PDS differs from existing data discovery and sharing work

in mobile ad hoc networks [3]–[5] by adopting a content

centric design [6], [7] where data are self-contained entities

that can be referenced, stored and accessed independently from

their original producers. Thus data can be widely cached at and

retrieved from any willing and capable nodes. This decoupling

offers great performance and robustness opportunities. The

consumer can retrieve data from a close by cached copy, or dif-

ferent chunks from multiple cached copies, to reduce latency

and aggregate bandwidth. When a node moves and carries

away its data, other nodes can cache the data and preserve the

availability. Compared to mobile ad hoc routing [8], [9] that

maintains paths to destination addresses, PDS derives paths

to data instead of addresses. It eliminates the complexities in

mapping data to node addresses, which is difficult to accurately

track in dynamic and uncertain pervasive edge environment.

It also differs from existing content centric networks [6], [7]

due to the wireless medium and network scale, which will be

discussed in Section VIII.
We make the following contributions:

• We devise robust and efficient pervasive data discovery

(PDD) that returns all data existence information faith-

fully, despite dynamic changes in both device and data

sets. Compared to existing content centric designs [6],

[7], it uses lingering queries each can retrieve a contin-

uous stream of returning metadata entries, mixedcast to

deliver partially overlapping data efficiently to multiple

consumers, and en-route message rewriting to minimize

redundant metadata collection.

• We design two-phase pervasive data retrieval (PDR)

that retrieves different portions of data from multiple

cached copies robustly and efficiently. It gathers chunk
distribution information to derive data reachability, and
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recursively divides retrieval queries to precisely choose

closest data chunk copies to minimize overhead.

• We implement a PDS prototype on android phones that

supports opportunistic caching and mixed cast by over-

hearing. Using characteristic parameters from the proto-

type, we conduct extensive simulations and show that

consumers can discover almost 100% data and retrieve

sizable files (20MB) in tens of seconds, in both static

and mobile scenarios, even under heavy traffic.

The rest of this paper is organized as follows: In Section

II, we present assumptions and preliminaries about peer data

sharing. Then in Section III and IV, we introduce our detailed

design of Peer Data Discovery (PDD) and Peer Data Retrieval

(PDR). We describe a few implementation issues in Section

V, and present a comprehensive evaluation in Section VI. We

discuss limitations of this work and plans for future works in

Section VII, compare related work in Section VIII, conclude

and discuss future work in Section IX.

II. ASSUMPTIONS AND PRELIMINARIES

A. Assumptions and Goals

We make the following assumptions: the environment is

uncertain and dynamic. Which devices are in proximity and

what data they possess, are opportunistic and not known

beforehand. At any time, devices may join or leave, bringing

in or carrying away their data. Although users are free to move

in/out any time, many of them stay for extended periods of

time from a few to tens of minutes. Thus the mobility is low

to moderate. The geographical area where users congregate

(e.g., restaurants, parks, airports) and thus the network size are

usually limited. Devices have reasonable storage (e.g., 16GB

or higher) and they can cache others’ data, both relayed or

overheard. The amount and duration of data exchange are usu-

ally moderate (e.g., a few MBs and minutes), due to the limited

bandwidth and contact durations. To enable opportunistic

caching, we assume nodes will overhear transmitted frames

whenever possible (e.g., network/MAC broadcast, pseudo-

broadcast [10], or monitor mode [11]) and act on the content.

We do not assume any specific radio technology. Devices can

connect to each other through different technologies (e.g., Wi-

Fi ad hoc, Wi-Fi Direct [12], D2D [13], Bluetooth, etc.). All

devices are cooperative and play by the rules. Only publicly

sharable data are exchanged and we do not consider security

or privacy issues in this work.

Each device can be a consumer that requests desired data,

or a producer that provides them (either generated locally or

cached). We focus on two typical scenarios: the consumer

needs many small data items meeting certain criteria (e.g.,

air pollution samples in certain area), or one large, possibly

popular data item (e.g., a video clip) consisting of many small

chunks, each available from multiple nearby devices. Due to

the uncertainty, a consumer has to discover what data exist in

nearby devices. Otherwise he may be blindly requesting non-

existing data. This is similar to customers requesting a menu

so they only order what a restaurant can serve. The Peer Data

Discovery (PDD) provides such a “menu” of available data

as completely and faithfully as possible. Peer Data Retrieval

(PDR) should return at least one copy of each requested data

item/chunk. Both are best effort: occasionally missing existing

or reporting disappeared data is allowed because applications

are not mission-critical.

B. Data Descriptors

When generating a new data item, a node creates and

associates to it a data descriptor (i.e., metadata) consisting

of multiple attributes each having a name and taking a certain

value of some primitive type (e.g., string, integer, float, Unix

time). For example, an NOx pollutant sample may have data
type of NOx, time of the sample generation at 2016-01-01
08:00:00, and location the GPS coordinates of the sample.

To avoid conflicts, a namespace where the data type is defined

(e.g., environment monitoring) can be added. For a

large data item divided into many chunks, an attribute total
chunks indicates how many chunks exist. The descriptor of

each chunk is simply the data item descriptor appended by a

chunk id attribute.

C. Metadata and Queries

Each descriptor is a metadata entry that indicates the

potential availability of the corresponding data item/chunk.

Thus all such entries together describe what data may exist

in the environment. Because metadata entries have small sizes

and are frequently requested by many consumers, they are

widely cached. Any node receiving, relaying or overhearing

metadata entries will cache them to serve potential future

requests.

On any device, a metadata entry exists as long as the

corresponding data item (or any chunk of the data item) exists.

If an entry is cached by a node without respective payload,

an expiration time is added to this entry. Upon expiration, the

node removes the entry if it does not yet have the payload.

These simple rules make metadata and corresponding data

roughly synchronized in the network. The existence of a

metadata entry indicates respective data item is likely available

(or at least partially available) somewhere in the network.

A consumer sends queries to specify desired data and

retrieve them from other devices. A query consists of a

collection of predicates specifying desired values on attributes

using a relation (e.g., =, >, ∈, etc.) to a value or value

range. Queries can be specified for data items, chunks and

metadata. The retrieval of them follows similar query-response

mechanisms, to be presented in Section III and IV.

III. PEER DATA DISCOVERY (PDD)

Peer Data Sharing (PDS) consists of two components:

Peer Data Discovery (PDD) and Peer Data Retrieval (PDR).
They share similar message formats, processing procedures

and routing mechanism. We present PDD in this section,

and introduce PDR design in Section IV focusing on its

differences.
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Fig. 1. PDD Query Processing: When receiving a query, a node should
perform 4 steps: Lingering Query Table Lookup, Data Store Lookup, Receiver
Check and Forwarding.

Algorithm 1 PDD Query Processing

Input: query
1: {LQT Lookup}
2: if lingering query table.Exist(query.id) then
3:

4: return
5: else
6: lingering query table.Insert(query)
7: end if
8: {DS Lookup}
9: matching metadata← data store.Match(query)

10: if not matching metadata.Empty() then
11: response← CreateResponse(matching metadata)
12: response.receiver ids.Insert(query.sender id)
13: SendResponse(respone)
14: end if
15: {Receiver Check}
16: if query.HasReceiverIds()

and not query.receiver ids.Exist(self.id) then
17:

18: return
19: end if
20: {Forwarding}
21: UpdateReceiverIds(query)
22: query.sender id← self.id
23: SendQuery(query)

PDD collects metadata through multi-round requests. In

each round the consumer sends a query message requesting

metadata, and waits for response messages carrying metadata

entries to return. Each node receiving that query should reply

all the metadata entries it holds back to the consumer. The

consumer dynamically decides whether and when to start a

new round, or terminate the data discovery if it determines

that almost all data entries are returned.

A. Basic Peer Data Discovery

A metadata query contains the namespace (set to system),

data type (set to metadata since metadata is also a type of

data), a globally unique query ID to detect redundant copies,

an expiration time beyond which the query is removed, the

ID of the node transmitting the query (at the current hop) for

returning the response, and an optional list of receiver IDs of

the intended next hop receivers (when not all neighbors). This

will retrieve all metadata entries. If the consumer is interested

in a particular type of data in certain spatial-temporal scope,

it can include filters on those attributes. A response contains

a namespace (system), data type (metadata), an optional

set of attributes corresponding to filters in the query, a random

thus globally unique response ID to detect redundant copies,

Fig. 2. PDD Response Processing: When receiving a response, a node should
perform 5 steps: Recent Responses Lookup, Data Store Lookup, Receiver
Check, Lingering Query Table Lookup and Forwarding.

Algorithm 2 PDD Response Processing

Input: response
1: {RR Lookup}
2: if received response ids.Exist(response.id) then
3:

4: return
5: end if
6: {DS Lookup}
7: for all metadata entry in response.payload do
8: if not data store.Exist(metadata entry) then
9: data store.Insert(metadata entry)

10: end if
11: end for
12: {Receiver Check}
13: if not response.receiver ids.Exist(self.id) then
14:

15: return
16: end if
17: {LQT Lookup}
18: matching queries← lingering query table.Match(response)
19: if matching queries.Empty() then
20:

21: return
22: end if
23: {Forwarding}
24: response.receiver ids.Clear()
25: for all query in matching queries do
26: response.receiver ids.Insert(query.sender id)
27: end for
28: SendResponse(response)

a list of receiver IDs of the intended next hop receivers, and

metadata entries as the payload.

1) Query Processing: Figure 1 and Algorithm 1 show

how PDD processes incoming queries. A node first examines

whether the query has been received before (LQT Lookup). It

checks the Lingering Query Table (LQT) that holds all recent

received, unexpired queries. A redundant copy having the same

query ID should be discarded. Otherwise, the new query is

inserted into the LQT. Then the node examines whether it has

matching data in its Data Store (DS Lookup). Since metadata

are requested, it creates and sends a response message that

contains all its metadata entries.

Next, the node examines the receiver list of the query

(Receiver Check). If the receiver list contains the ID of itself,

or the list is empty (indicating all neighbors should relay), the

node should continue to forward the query. Before relaying

the query, it updates the receiver ID list with intended next

hop receivers (or empty list if all neighbors should relay),

and changes the sender ID to that of its own (Forwarding).

Thus its neighbors know whether to forward the message,
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and to which node to return response messages. Only for

newly formed networks or generated data where no routing

information is available, a query is flooded; otherwise it is

forwarded only in directions where the requested data exist.

As we discussed in Section II, the size of network that PDS

targets is usually limited, thus we do not limit the scope of

query propagation. However, such limiting can be achieved

easily with a hop counter if needed.

The lingering query is very different from Interest messages

in some content centric work [6], [7]. A lingering query stays

in the LQT until its expiration, upon which it is removed.

Because many nodes have metadata entries and they will come

back over extended period of time, one lingering query can

direct the continuous stream of returning responses back to the

consumer. In contrast, the Interest is removed upon one single

response message. Thus many Interest messages are needed to

retrieve all matching metadata entries. By setting appropriate

expiration, PDD incurs only one or a few lingering queries.

2) Response Processing: Figure 2 and Algorithm 2 show

how PDD processes returning responses. A node first examines

whether the response has been received before (RR Lookup)

from other neighbors (e.g., overheard). It examines the re-

sponse ID against the IDs of recently received responses.

A redundant one will be discarded. To enable opportunistic

caching, it detects if any new metadata entries exist in the

response. They will be added to its data store (DS Lookup).

Thus any overheard metadata entry could be served to other

consumers in the future.

Then the node examines whether the receiver list contains

itself (Receiver Check). If so, it is the intended receiver back

to the consumer, and should continue to relay the response.

The receiver ID checking ensures only nodes on the right

path (e.g., reverse) will relay the response. Without it, the

response would be flooded throughout the whole network,

causing severe contention and overhead.

Before relaying the response, it finds unexpired matching

lingering queries in LQT (LQT Lookup), and sets the Re-

ceiver IDs to neighbors who transmitted these queries, then

sends the message (Forwarding). When overhearing is pos-

sible, one response can be overheard and relayed by multiple

neighbors on return paths to possibly different consumers.

This avoids sending multiple responses with same content to

different neighbors.

B. Efficiency and Robustness Enhancements

1) Mixedcast: The above assumes every query asks for all

metadata entries. If some of them have filters, metadata entry
pruning is needed. An entry is kept in the response only if it

has at least one matching lingering query (i.e., requested by at

least one consumer). The Receiver IDs are set to neighbors

who sent matching queries (according to LQT). Thus the

payload is the union of desired entries of consumers generating

those queries: an entry might be needed by one or multiple of

these consumers, while one response message carries all these

entries. Thus any entry, regardless of requested by how many

consumers, is transmitted only once. This pruning is conducted

by all nodes on return paths. Thus only entries desired by

downstream consumers are forwarded at each hop.

We call the above mixedcast. Multiple consumers may

request partially overlapping sets of metadata. One “joint”

response message contains the union of entries requested

by consumers, while each entry is sent only once, even

needed by multiple consumers. This differs from multicast

where the same content is delivered to multiple receivers.

Mixedcast ensures all needed entries are included for each

receiver (consumer) while pruning ensures only needed ones

are returned towards the consumers.

2) Multi-round Discovery: Depending on network quality

and node mobility, messages can get lost and nodes can be

temporary disconnected. Thus the above single round method

may fail to discover some data items. PDD adopts a multi-

round discovery algorithm to obtain as many metadata entries

as possible.

The consumer makes two decisions: when the current round

is finished, and whether to start the next round. Upon each

response, it computes the ratio of number of responses re-

ceived within a recent time window T to that since sending

the query. If the ratio is less than a threshold Tr, the current

round is considered (almost) finished. As time goes, less and

less responses return. Thus the rule detects the “diminishing”

of this trend. It then computes the proportion of new meta-

data entries received in this round compared to all received,

including previous rounds. If the proportion is greater than a

threshold Td, showing many new entries are received in the

current round and more might be out there, the consumer starts

a new round.

To avoid receiving redundant entries, the consumer applies

a redundancy detection technique. It appends to the query a

Bloom filter [14] including entries already received. 2 Bloom

filter is a space-efficient data structure representing a set of

elements and widely used to test whether a given element is

in the set, with low and controllable false positive rate. Upon

receiving a query, the Bloom filter is cached together with the

lingering query.

The Bloom filter is used to rewrite response and query

messages en-route to reduce redundancy. When sending back

or relaying a response, a node should test each metadata entry

against the Bloom filter in the matching query. It should send

back only those not included in the Bloom filter (thus not yet

received by the consumer); it also inserts them in the Bloom

filter of the lingering query in LQT, thus the same entries

returned by other nodes later will not be transmitted again.

A node possessing local data may return a response before

further propagating a query. It should rewrite the query by

inserting new entries that it just sent into the Bloom filter of

the query. It then forwards the updated query. Thus down-

stream nodes will not return the same entries. Both response

and query are rewritten en-route at each hop. Such message

2We have compared histogram, wavelet [15] and Bloom filter and found
Bloom filter has the highest compression ratio for discrete and unrelated
individual items like metadata entries. We do not elaborate due to space limit.
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rewriting can significantly reduce redundant metadata returned

and contention losses.

IV. PEER DATA RETRIEVAL (PDR)

After nearby data are discovered, a consumer can retrieve

interested data items. PDD handles two typical scenarios:

retrieving one large data item, or collecting many small data

items that satisfy a query (e.g., air pollution samples in a

radius). The latter follows almost the same process as metadata

discovery because these samples are of small sizes. The only

change is the filters in queries specify desired data type, and

location/durations instead of metadata. Therefore, we focus

on retrieval of large data items. We are aware that there are

other potential scenarios: retrieving many large data items, or

subscribing to a data item that keeps growing (e.g., live video

streams). While the former can be achieved by applying PDD

for each data item separately, the latter brings more challenges

such as real time performance and quality of service, which

we plan to address in future work.

PDR has two phases: chunk distribution information (CDI)
retrieval and chunk retrieval. In phase 1, the consumer

requests the large data item’s CDI, which describes where the

nearest copy of each chunk can be found. The CDI is built on

demand by propagating a query in the network and soliciting

responses. In phase 2 the consumer requests and retrieves each

chunk from its nearest provider.

The purpose of CDI retrieval is to build routing entries for

different chunks of the requested data item. The principle is

similar to Distance-Vector Routing [16]. However, instead of

finding one shortest path to a given address, PDR maintains

that to a given data chunk. Such information is used to find

the nearest copy among all candidates, and recursively rewrite

the query to divide requested chunks en-route.

The use of CDI ensures each chunk is retrieved only once

from a nearest copy to minimize message overhead. The cost is

building and collecting CDI. When data items have small sizes

(e.g., pollution samples), CDI retrieval may have comparable

overhead. However, for large data items such overhead is much

smaller than transmitting redundant data chunks. Thus the two-

phase mechanism is intended mainly for data items of many

chunks (e.g., video clips).

A. Phase 1: Chunk Distribution Information Retrieval

When chunk routing entries do not exist or outdated, CDI

retrieval is conducted in manner similar to PDD. We focus

on the differences: the query specifies namespace “system”,

data type “cdi” and “descriptor” whose value is the

requested data item’s metadata, which includes possibly its

unique name. A node creates a response if its Data Store

(DS) has chunks or unexpired CDI entries of the requested

data item. An entry contains a chunk id, a hop count to the

nearest chunk copy, and a neighbor id via which the copy can

be retrieved. The latter two are set to 0 and the node’s own ID

if its DS contains the chunk. When a chunk can be retrieved

with the same least hop count via multiple neighbors, a CDI

entry is created for each neighbor. If a node does not have the

chunk in its Data Store, the respective CDI entry is removed

after an expiration time. Thus obsolete CDI entries do not stay

forever.

A CDI response has namespace “system”, data type

“cdi”, the same “descriptor,” and a list of ChunkId-

HopCount pairs each indicating which chunk can be retrieved

at the specified hop count from the transmitting node. Upon

a response, a node creates a new CDI entry for each received

ChunkId-HopCount pair, with hop count = HopCount + 1,

and neighbor id set to the transmitting neighbor. The new

CDI entry replaces existing ones in the DS if it has smaller

distance for the same chunk, or is added in the DS if no

CDI entries exist for that chunk. Responses will return to the

consumer along reverse paths of query propagation. Eventually

CDI entries are created on demand at each node, indicating

which neighbors have the shortest paths to which chunks.

B. Phase 2: Recursive Chunk Retrieval

Since one large data item may have many chunks, the

consumer sends multiple chunk queries, each requesting a

subset of the chunks and directed at a different neighbor

closest to those chunks. A node receiving a chunk query will

reply requested chunks that it holds, and further divides the

subset of remaining chunks into multiple sub-queries, each

directed at a different neighbor. This recursive query division

allows simultaneous requests of different chunks from different

(and nearest) neighbors, both aggregating the bandwidth and

reducing latency.

Given CDI entries, each chunk should always be retrieved

from the neighbor with the least hop count. When multiple

such neighbors exist for one chunk, any one is fine. This

may lead to unbalanced loads among neighbors, thus more

traffic, contention and losses in some directions. PDR tries to

balance the loads when assigning chunks by minimizing the

maximum load among neighbors. The problem can be formally

represented:
min
X

max
i∈N

∑

j∈C

dijxij

s.t. xij ∈ {0, 1}
xij ≤ eij∑

i∈N

xij = 1

(1)

where N and C denote the sets of neighbors and requested

chunks respectively. While eij ∈ {0, 1}, eij = 1 indicates

chunk j can be retrieved from neighbor i with the least

distance, 0 otherwise. dij ∈ D is the least hop count to retrieve

chunk j from neighbor i. xij’s are decision variables. xij = 1
indicates assigning chunk j to neighbor i, 0 otherwise. The

above problem assigns chunks among neighbors to minimize

the maximum load among neighbors. The constraints guaran-

tee that each chunk is always assigned to only one neighbor

where it can be retrieved with the least distance.

The above problem formulation balances the load among

all immediate neighbors but not necessarily all downstream

nodes. The latter would require global knowledge about the

distribution of copies of all chunks, which incurs too much

complexity and overhead.
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The constraint xij ≤ eij can presented as (1 − eij)xij ≤
0, equivalent to a max-min version Generalized Assignment
Problem (GAP), which is proved to be NP hard and many

approximate algorithms are proposed [17]. We use a simple

heuristic algorithm. It first assigns chunks to neighbors with

the least hop counts. Then it finds the neighbor of the highest

load, moves one chunk from it to another neighbor that can

retrieve the chunk at the (possibly next) smallest hop count.

This is repeated until the highest load no longer decreases. Its

complexity is O(|N ||C|2), which is acceptable because both

|N | and |C| are small to moderate (e.g., ∼ 10) in each query.

V. PDS PROTOTYPE IMPLEMENTATION

PDS is designed at application level above the network

stack. It can leverage different underlying network (e.g., IP)

and link technologies (Wi-Fi infrastructure/ad hoc mode, Blue-

tooth, ZigBee, Wi-Fi Direct [12], D2D [13], etc.) with proper

adaption. At application level, PDS treats all network/link

technologies as “faces” [6], [7]. Such abstraction provides a

uniform high-level interface while hiding heterogeneous lower

level details of different network/link technologies.

To enable opportunistic overhearing critical to reduce mes-

sage overhead thus efficient caching, PDS should take advan-

tage of the broadcast nature of the wireless medium whenever

possible. Many PDS query/response messages are intended

for multiple neighbors, and if supported, overhearing allows

non-intended neighbors to cache the overheard content. Thus

overhearing transmissions is key to improve data availability

and retrieval performance. Reliable wireless broadcast and

multicast techniques [10], [18]–[20] have been studied and

should be leveraged if available. However, many of them

require changes at network/link level, thus inconvenient for av-

erage users of commodity mobile devices (e.g., smartphones),

which constitute a large fraction of edge devices.

Recent work [21], [22] has proposed methods to create

multi-hop networks among commodity devices using Wi-Fi

Direct [12], supported natively in many smartphones. The

network is formed by interconnecting multiple single-hop Wi-

Fi Direct groups. Certain devices in each group serve as gate-

ways providing connectivity across groups. Thus opportunistic

overhearing can be enabled by network level (e.g., UDP)

broadcast within one hop neighborhood, without changes to

network/link levels. By design, PDS messages may contain

an explicit list of the ID(s) of intended neighbor(s). Thus

while all neighbors overhear the same transmission from UDP

broadcast, only those intended receivers (i.e., those whose IDs

appear in the intended receiver list) continue to transmit, while

others only cache useful content. Thus a PDS UDP broadcast

message does not cause a network wide “storm”.

We build a PDS prototype on Android phones to measure

the practical performance of such single-hop performance.

The parameters are plugged into our simulator later to ensure

realistic large-scale simulation. For simplicity in enabling

overhearing, all messages are sent by UDP broadcast. We

will discuss further strategies dealing with different network

mechanisms in Section VII. We present a few implementation

issues:

1) Per Hop Ack/Retransmission: UDP broadcast is unreli-

able, and may suffer high loss rate in wireless networks. We

adopt application level ack/retransmission to improve per hop

reception. After sending a message, a node waits for acks

from intended receivers. A receiver should send back an ack,

including the ID of the response and its own ID, so that the

sender knows which receiver has received which response.

Upon a RetrTimeout, if the sender has not received acks

from all intended receivers, it transmits the message again

with receiver IDs set to those not yet acknowledged only. A

message is retransmitted up to MaxRetrTime times.

2) Leaky Bucket to Pace Sending Rate: We observe that the

Android non-blocking UDP send API has very low reception

ratio. Even with one phone sending to another phone in a

quiet wireless environment without other senders, only about

14% messages are received. We find that the low reception is

caused by an internal buffer overflow in UDP send API. When

the API is called to send a message, the message is put into

an internal buffer. However, the rate that the MAC can send

data in broadcast mode is low (e.g., 7.2 Mbps in 802.11n

20MHz [11]). If the application sends UDP packets at data

rates much higher than MAC broadcast data rate, messages

arrive at the buffer much faster than they can leave. When the

buffer is full the phone’s OS simply discards newly arrived

messages. Thus those lost messages are never transmitted by

the radio. We validate this observation by having 4 receivers (1

laptop running Wireshark [23] and 3 phones) listening to the

same sending phone. We find that almost all of the first 658

messages (about 1MB) are received by all receivers (while the

buffer is not yet full). After that, messages start getting lost.

Lost messages are never heard by any receiver, indicating that

they were not transmitted.

We use a classical leaky bucket mechanism [24] at appli-

cation layer to pace the PDS data sending rate. The bucket

has a BucketCapacity and LeakingRate, which are the

size of internal buffer PDS plans to use and the data rate that

messages (if any) are taken from the buffer (i.e., transmitted).

We conduct experiments to find the leaky bucket parameters

for the best performance.

3) Bloom Filter Size: Given estimated number of elements

in the set and desired false positive probability, the proper size

of a Bloom filter can be calculated [14]. When generating a

query, the consumer examines how many entries are already

received, then computes a small Bloom filter size to achieve

a small (e.g., < 0.01) false positive rate. When the amount

of received entries is large, the Bloom filter size may still be

big. To address this issue, the consumer uses different hash

functions to build Bloom filters in each round. With more

rounds, thus more different hash functions, the probability

that an entry remains a false positive becomes smaller and

smaller (e.g., 0.02 in 2 rounds and 0.003 in 3 rounds for 10,000

entries). Thus the size of Bloom filters can be limited.

4) Prototype Performance Characteristics: We use 5 An-

droid phones (3 Samsung Galaxy Nexus, 1 LG Nexus 5 and
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Fig. 3. UDP broadcasting recep-
tion.

Fig. 4. Impact of max hop count
on recall of single round PDD.

1 Motorola Nexus 6) to measure single-hop performance. All

phones are within one hop radio range. Packets each 1.5KB

size are sent as quickly as possible.

One sender and one receiver phone in a quiet wireless

environment shows only 14% reception rate (Figure 3) due

to internal buffer overflow. We further explore leaky bucket

parameters to improve the reception (figure omitted). When

LeakingRate grows (1-5Mbps), the reception first stays

high (> 97%) for a while and then starts to drop, because too

high leaking rates exceed how fast radios can broadcast. A

large BucketCapacity also lowers the reception, because

it may overestimate the available internal buffer size, thus

causing overflow. We find 300KB BucketCapacity and

4.5Mbps LeakingRate achieves a balance between recep-

tion and data rates.

Leaky bucket addresses message losses by internal buffer

overflow. Ack/retransmission help reduce those by exter-

nal wireless collisions. We explore how RetrTimeout or

MaxRetrTime impact the reception for two concurrent

senders sending to one receiver (figure omitted). We find

that as RetrTimeout or MaxRetrTime increases, the

reception first improves then plateaus. This is because longer

RetrTimeout allows more time for ack to return. Thus the

sender does not prematurely retransmit to cause more con-

tention. More retries directly improve the chances of reception.

However, the benefits diminish beyond 0.2s RetrTimeout
or 4 MaxRetrTime.

We compare the data rate (network layer throughput) and

reception rates of raw UDP broadcast, leaky bucket only and

with ack. Multiple phones send data to one phone concurrently.

Figure 3 shows the reception rate have great improvements

with leaky bucket (from ∼ 10% to 40 ∼ 90%), and increases

further to 85 ∼ 99% when ack/retransmission is also added.

We conclude that proper leaky bucket and ack/retransmission

parameters can achieve reasonable one hop data rates and

high reception even with multiple concurrent senders. These

parameters are used in multi-hop simulations next.

VI. PERFORMANCE EVALUATION

A. Methodology

We implement PDS in NS-3 [25], a popular network simu-

lator including lower layer Wi-Fi MAC stack. Single-hop data

rate and reception measured from the prototype are ported

as parameters to the simulator. We simulate both static and

mobility scenarios. For static scenario, we distribute 100 nodes

as a 10 by 10 grid at proper neighboring distances such that

each node can communicate directly with its 8 surrounding

neighbors. A consumer is at the center of the field; for multiple

consumers, they are randomly located in the center 5 by 5 sub-

grid.

We generate mobility traces based on 8-hour observation

of two real world scenarios in a university, and consumers

are picked randomly from all nodes. Each metadata entry is

30 bytes, enough to cover most common data type, time and

location attributes. Each data chunk is 256KB, large enough

to avoid too many chunks while small enough to fit in the

internal buffer and transmit as a unit.

We use several metrics: Recall is the fraction of distinct

metadata entries or chunks received by the consumer, rep-

resenting the correctness of PDS. Latency is the time from

the consumer sending the query to the arrival of the last

returned metadata entry or data chunk, which is strongly

related to the system performance and user experience. For

energy efficiency, the main consumption of the communi-

cation intensive PDS design comes from wireless network

communication. Therefore, for simplicity we use message
overhead, which is the number of bytes of all messages, to

show the cost of data transmission. We distribute metadata

entries or data chunks among all nodes uniform randomly

at the beginning of simulation. Several factors impact the

performance: metadata amount is the number of different

metadata entries; data item size is the size of the complete data

item; redundancy is the number of copies of each metadata

entry or data chunk. We also evaluate how parameters in

different components (e.g., MaxRetrTime, RetrTimeout,

Td) affect their performance. Unless specified, results are

averaged over 5 runs.

B. Multi-hop Simulation

We first run single round PDD without ack/retransmission

under different metadata amounts and redundancy. We observe

a saturation point around 10,000 total metadata entries, beyond

which the recall becomes much lower. E.g., with one copy, the

recall remains around 0.35, but decreases obviously beyond

10,000 entries (0.20 at 20,000 entries); with two copies, it

remains around 0.55 before 5,000 distinct entries. Unless

specified, in the following we use 5,000 distinct entries as

the normal load and those beyond 10,000 for stress tests.

Redundancy is always set to 1 since each entry initially has

only one copy on its original producer.

1) Single Round PDD: Next we study how

ack/retransmission and multi-round affect the performance.

Single round PDD (with ack/retransmission) achieves 76%

recall, 3.2s latency and 1.54MB message overhead (figure

omitted). Despite the significant improvement in recall

brought by ack/retransmission (76% vs. 32%), there are still

1/4 of data items that are not discovered. According to Figure

3, ack/retransmission can improve the reception to higher than

90% when two devices send to one receiver concurrently, all

within one hop. However, the reception between provider and

consumer can decrease sharply when there are more hops,

and even one hop reception might be lower since there might

be more than 2 concurrent senders in the simulation scenario.
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Fig. 5. Recall of multi round PDD
Fig. 6. Impact of metadata amount
on PDD recall and latency.

To validate this, we change the nodes distribution: while

keeping the consumer at the center, the size of grid varies

from 3 by 3 to 11 by 11, thus maximum hop count to the

consumer from 1 to 5. We keep the average metadata entries

at each node to 50 (same average load as 5,000 entries in 100

nodes). Figure 4 shows that as the maximum hop count grows

from 1 to 5, recall drops from 100% to 72.3%. Latency and

message overhead increase from 0.3s/0.04MB to 3.5s/1.71 MB

(figure omitted), because both the network size and metadata

amount increase. The result shows that a single round cannot

achieve high recall at large network size, because message loss

increases over multiple hops. Thus multi-round data discovery

is necessary.

2) Multi-round PDD: Three parameters affect the number

of rounds and their durations: the recent time window T in

which the number of received entries are counted, the fraction

of such entries must be less than a threshold Tr of all entries

in the current round to stop this round, and the ratio of entries

in the current round to all received entries must be greater than

Td to start a new round. Larger T, smaller Tr, Td are more

aggressive to extend the current round or start a new round.

Figure 5 shows how T and Td impact recall when Tr = 0.

Recall increases and becomes stable once T reaches 0.6-0.8s,

because a larger T extends the current round and receives more

entries until there are no more entries to return. Smaller Td

leads to higher recall (e.g., 1 for Td = 0 vs. 0.95 for Td = 0.3).

Similar trend can be observed for latency and overhead (figures

omitted), which grow fast initially and become gradual or flat.

Smaller Td, thus more rounds, also increases the latency and

overhead (e.g., 3.4s and 3.85MB for Td = 0.3 vs. 5.6s and

5.13MB for Td = 0). When we keep Td = 0, varying Tr

does not have significant impact on recall, latency or overhead

(thus those figures not presented). After more trials we use

Td =Tr = 0, and T= 1s as the best combination.

Next we evaluate multi-round PDD under normal and stress

load, multiple consumers and real world mobility. Figure

6 shows when metadata amount increases from 5,000 to

20,000, recall remains at 100%, while latency increases sub-

linearly from 5.6s to 11.2s. Message overhead increase almost

linearly from 5.13MB to 22.21MB (figure omitted due to space

limit). This demonstrates PDD has great robustness against

network saturation because: 1) there are less and less metadata

entries to collect in subsequent rounds. Redundancy detection

filters out already received entries; 2) metadata entries lost in

previous rounds leave cached copies along return paths, and

more copies are created progressively closer to the consumer.

Thus it takes much less hops and latency to retrieve them in

Fig. 7. Recall and latency of
PDD with multiple sequential con-
sumers.

Fig. 8. Recall and latency of PDD
with multiple simultaneous con-
sumers.

Fig. 9. Impact of node mobility on
PDD recall in student center.

Fig. 10. Impact of node mobility
on PDD latency in student center.

later rounds.

Then we evaluate PDD when multiple consumers, either

sending queries sequentially or simultaneously. Figure 7 shows

that all sequential consumers achieve nearly 100% recall.

Latency becomes smaller for later consumers: 5-7s for the

first two, 4.8s, 3.2s for the third and fourth. This is due to the

overhearing and caching: more redundant copies are created,

and closer to consumers. So a consumer has more cached

entries and needs to collect less entries from closer copies. The

last one takes only 0.2s because it has already cached more

than 95% entries even before sending its own query. Figure

8 shows simultaneous consumers also have 100% recall,

while latency increases sub-linearly and becomes stable as the

number of consumers grows. This is because one mixedcast

transmission delivers data for multiple lingering queries, thus

less latency for each additional consumer. Message overhead

trends for both sequential and simultaneous consumers are

similar to respective latency, thus figures omitted.

We further study how node mobility impacts PDD. To make

our evaluation as close to real world scenarios as possible, we

observe people’s movements in a Student Center and Class-
rooms in a university. The student center is about 120×120m2,

while classrooms 20 × 20m2. We monitor how many people

stay, how frequently people join, leave and move within the

area. The observations last 1-1.5 hours and is repeated 6 times

(in total 8 hours). We find that there are usually about 20/30

people stay in the area, on average 1/0.5 people join or leave

and 4/0.5 people move inside the area per minute for the

two locations. We generate mobility traces based on these

observations, and vary the joining/leaving/moving frequencies

from 0.5 to 2 times of what are observed.

Figures 9 and 10 show that as node mobility increases,

recall remains nearly 100% while latency remains within 2s

for the Student Center. Message overhead also remains within

3MB (figure omitted). Simulation in classroom scenario have

similar results, whose figures are omitted due to space limit.

The results show that PDD is robust under real world mobility

scenarios.
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Fig. 11. Impact of data item size
on PDR recall and latency.

Fig. 12. Impact of node mobility
on PDR latency in student center.

Fig. 13. Impact of chunk redun-
dancy on data retrieval latency.

Fig. 14. Impact of chunk redun-
dancy on data retrieval message
overhead.

3) PDR Performance: First we vary data item size from

1MB to 20MB, which covers the size of most commonly

shared files (e.g., a photo to a 5min 720p video clip). All ex-

periments achieve 100% recall. Thus we only present latency

and message overhead. Figure 11 shows that, as data item size

grows from 1MB to 20MB, latency and message overhead

increase almost linearly from 8.2s/4.83MB to 46.1s/54.22MB.

We notice that, with 4.5Mbps broadcast data rate of 802.11n

20MHz, it takes the consumer at least 35.6s just for receiving

a 20MB file. Thus PDR’s 46.1s total latency (including col-

lecting CDI and data over multiple hops, and potential mes-

sage loss/retransmissions) is quite small. Message overhead is

about 2-3 times of the data item size, because most chunks

travel several hops to reach the consumer, adding chunk size

overhead at each hop.

We compare PDR with a baseline Multi-round Data Re-

trieval (MDR) mechanism which is similar to PDD except data

chunks instead of metadata entries are retrieved: a consumer

sends queries in multiple rounds. Each query requests all the

chunks that are not yet received. Nodes receiving queries

reply requested chunks they hold, and redundancy detection

techniques are used to avoid multiple nodes along a reverse

path replying the same chunk.

While both methods achieve 100% recall in all experiments,

Figures 13 and 14 show the impact of chunk redundancy on

latency and message overhead for a 20MB data item. When

only one copy exists, MDR has slightly better performance

than PDR (10.7s and 51.34MB vs. 13.5s and 54.22MB). How-

ever, in reality, popular files will have more copies exist. MDR

shows almost linear increase, while PDR has flat and slight

decrease in latency and overhead, about half of MDR’s. (e.g.,

11.9s and 45.98MB vs. 27.6s and 94.23MB when redundancy

is 5).

This is because those redundancy detection techniques can

not completely eliminate redundant retrieval, especially those

along different reverse paths to the consumer. In contrast, PDR

always retrieves exactly one closest copy of each chunk. When

more copies of each chunk exist, the nearest copy becomes

Fig. 15. Latency and message
overhead of PDR with multiple
consumers.

Fig. 16. Latency and overhead
of PDR with multiple simultaneous
consumers.

closer, thus the slight drop in both latency and message

overhead. Similar observations are found for other data item

sizes. The results show that PDR’s two-phase data retrieval

mechanism is necessary and can significantly reduce latency

and message overhead for popular data items with redundant

copies.

We also study how multiple consumers and node mobility

impact PDR. Recall is always 100% for both sequential and

simultaneous consumers. Figure 15 shows that, from the 1st

consumer to the 5th, latency of sequential consumers de-

creases from 46.1s to 38.1s, while message overhead decreases

from 54.22MB to 23.11MB. The significant overhead drop is

because more copies of chunks are cached during previous

retrieval, thus the average hop each chunk is transmitted

become much smaller. Closer chunk distance also decreases

latency. Chunks from different directions eventually have to

wait for the consumer to receive, thus the drop in latency

is somewhat limited. For simultaneous consumers, Figure 16

shows that when the number of consumers increases, both

latency and message overhead first increase then become

stable. This is because initially there is only one copy of each

chunk, thus all simultaneous consumers request the same copy.

Consumers at the same direction to a chunk can all benefit

from one transmission in that direction.

Finally, we study how node mobility impacts PDR. We

present PDR latency retrieving a 20MB data item in Student

Center (Figure 12). When mobility increases, latency re-

mains roughly the same (42s-48s). Message overhead remains

24MB-27MB while recall is always 100% (figures omitted).

Results in classrooms are similar. The results show that PDR

is robust under real world mobility.

VII. DISCUSSION AND FUTURE WORK

PDS is designed for spontaneous, agile data exchange

among nearby opportunistically gathered users. It targets

small-scale networks with low to moderate mobility. The

proposed mechanism in this paper is our first step towards

regional data sharing among nearby mobile devices, especially

for crowdsensing data. It is difficult to apply such pure peer

based design on a larger scale region (e.g., the whole campus

of a university). Increasing amounts of both peer devices and

distinct data items require maintaining metadata in a more

structured and concise way. Our next step is to leverage edge

servers to scale the data sharing service to campus size regions.

PDS can leverage different network/link technologies. In

the prototype we choose one hop UDP broadcast to enable
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overhearing without changing network/link stacks. By includ-

ing an intended receiver ID list, only neighbors appearing in

the list will retransmit the message (e.g., responses). Only

when routing entries for certain data do not exist (e.g.,

newly produced data), a query may need to be flooded.

Well studied mechanisms [26], [27] reducing broadcast and

contentions in flooding can be used. When allowed, non-

application level techniques can enable overhearing without

network level broadcast. Reliable multicast or broadcast tech-

niques at MAC level have been studied [18], [19]. Rooting

the device can enable monitoring mode thus overhearing of

unicast messages [10], [20] when network/link broadcast is

not allowed.

Compared to Wi-Fi ad hoc mode [11] which has little

support, Wi-Fi Direct is natively available in commodity

mobile devices. It can be used to form multi-hop networks

among them [21], [22], with no or minimal change to the

OS. Certain devices in single-hop Wi-Fi Direct groups act as

“bridges” to interconnect groups. PDS can use the same one

hop UDP broadcast to enable overhearing in such networks.

Adaptation of query/response delivery may be necessary to

avoid overloading those “bridge” devices.

In this paper, we evaluate the performance of PDS by a

combination of simulation and a small single-hop network

prototype of real phones. There are still some limitations.

A large scale prototype testbed would produce more reliable

measurements of the performance of proposed mechanisms,

such as energy consumption and robustness to mobility. Build-

ing and deploying such a testbed is also one future work that

we are working on.

The current PDS design does not consider security or pri-

vacy issues, and handles publicly sharable data only. In reality

a provider may share some data with only certain specific

users. Mechanisms that encrypt/sign the data and distribute

respective keys to relevant parties have been proposed [28],

[29], and studied in content centric networks [30], [31]. Thus

encrypted data can still be cached anywhere, but the content

accessible to only authorized parties.

Incentive mechanisms that motivate users to consume their

resources to participate in such sharing have been studied [32],

[33]. With such incentives, PDS provides the data discovery

and retrieval part for sharing.

Current PDS caches all metadata entries due to their small

size. Data chunks are much bigger, thus cannot always be

cached due to limited storage capacity. We plan to study proper

data chunk caching strategies based on their popularity and

devices’ resource availability.

To enable overhearing, the radio must be kept on, which

may lead to high energy consumption. Mechanisms for radio

schedule synchronization and power management [34], [35]

can be used to ensure message reception and overhearing while

preserving energy by radio duty cycling.

VIII. RELATED WORK

PDS differs from existing data discovery and sharing work

in mobile ad hoc networks [3]–[5]. They are mostly designed

for traditional endpoint based networks, where data are bond

to specific nodes with certain network address. Sailhan et al.

discuss how to discover services in the network, where each

service has only one provider and the discovery is actually

collecting addresses of service providers [4]. Existing endpoint

based ad hoc routing protocols [8], [9] focus on finding one

path to a specific destination address. PDS adopts a content

centric design where routing entries are for data instead of

addresses. Data are cached opportunistically by any capable

and willing nodes. Thus consumers do not need to know or

care at which addresses the data exist, as long as existing data

are discovered and at least one copy (probably the nearest one)

is retrieved. PDS focuses on application level mechanisms of

lingering queries, mixed cast and en-route message rewriting

to find and retrieve data efficiently and robustly.

Information centric networks [6], [7] have been studied

extensively. PDS shares similar query-response processing to

Content Centric Network (CCN) [6] and Named Data Network

(NDN) [7]. Casetti et al. focus on establishing connectivity in

multi-hop Wi-Fi Direct networks [22] and use content centric

routing tables similar to those in [6], [7]. Due to differences

in wireless medium, network scale, PDS differs from them

in important aspects: 1) Both CCN and NDN are initially

intended for wired networks where each “face” is connected

to a different neighbor, whereas PDS leverages the broadcast

wireless medium to reduce message overheads and enable

opportunistic overhearing. Explicit intended receiver list is

used to specify which neighbors should continue forwarding

the message. 2) Bandwidth is a scarce resource in shared

wireless medium. In CCN/NDN, each Interest is removed

upon the return of any matching Data, and Interest/Data are

delivered as-is. While PDS uses lingering queries each can

guide the return of many response messages to avoid repeating

a query many times. It further joins the partially overlapping

content of multiple response messages in one mixed cast,

and rewrite both queries and responses en-route to minimize

transmissions of redundant data, and maximize opportunistic

caching.

IX. CONCLUSIONS

In this paper, we propose content centric data discovery and

retrieval among peer edge devices, which is fundamental to

many novel applications where opportunistically congregated

devices need to share each other’s sensing data. We design

multi-round data discovery, and recursive data retrieval by

combining lingering queries, mixed cast, and en-route message

rewriting techniques that minimize redundant transmissions

and maximize opportunistic caching. Evaluations based on an

Android prototype demonstrate almost 100% data retrieval in

short time under multiple consumers and real world mobile

scenarios.
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