
Towards Fine-Grained Access Control in
Enterprise-Scale Internet-of-Things

Qian Zhou , Mohammed Elbadry, Fan Ye , and Yuanyuan Yang , Fellow, IEEE

Abstract—Scalable, fine-grained access control for Internet-of-Things is needed in enterprise environments, where tens of thousands

of users need to access smart objects which have a similar or larger order of magnitude. Existing solutions offer all-or-nothing access,

or require all access to go through a cloud backend, greatly impeding access granularity, robustness and scale. In this paper, we

propose Heracles, an IoT access control system which achieves robust, fine-grained access control and responsive execution at

enterprise scale. Heracles adopts a capability-based approach using secure, unforgeable tokens that describe the authorizations of

users, to either individuals or collections of objects in single or bulk operations. It has a 3-tier architecture to provide centralized policy

and distributed execution desired in enterprise environments. Extensive analysis and performance evaluation on a testbed prove that

Heracles achieves fine-grained access control and responsive execution at enterprise scale. Compared with systems using access

control list, Heracles eliminates or reduces by 10x–100x the updating overhead under frequent changes of subject memberships and

policies. Besides, Heracles achieves responsive execution: it takes 0.57 second to access 18 objects which are scattered 1–9 hops

away, and execution on a 1-hop or 2-hop object needs only 0.07 or 0.13 second respectively.

Index Terms—Internet of Things, security, access control

Ç

1 INTRODUCTION

ACCESS control is a fundamental requirement on Internet-
of-Things [1], critical for not only convenience (e.g.,

lights), but also safety of people and physical assets (e.g.,
door locks). Most existing smart home products [2] offer
coarse grained all-or-nothing access: family members have
full rights while others have nothing. This is far from suffi-
cient, especially in an enterprise environment where tens of
thousands of subjects (i.e., employees) need to access smart
objects which have a similar or larger order of magnitude
(e.g., a university campuswith tens of buildings each embed-
dedwith thousands of IoT devices).

The access control in such enterprise environments must
be fine-grained. Given the same object, different subjects may
have different access rights, or even different degrees of
freedom invoking the same function of the object. The avail-
able access rights may also depend on the context (e.g., time
of the day). For example, only executives may access the
door lock, lights, projectors in a VIP meeting room; manag-
ers may occupy a conference room for up to half a day,
while non-managers can use it for at most two hours. A jani-
tor may enter all these rooms for cleaning before 9 AM, but
with no access to IT equipment.

To ease management, many existing solutions [3], [4], [5]
use a fully centralized strategy, at the expense of weaker avail-
ability and responsiveness. To operate an object, a subject
sends a command to the cloud first, which authenticates the

subject and confirms that she has sufficient rights, and then
notifies the object to execute the command. This strategy pla-
ces the cloud in the center of the access control loop. It ensures
security since the cloud is well protected. However, upon loss
of connectivity, nothing is accessible. Besides, the back-and-
forth travel to the cloudmay add significant latency, adversely
impacting responsiveness thus user experience.

What is truly desirable is centralized policy while distributed
execution. The policy regarding which subjects have what
access rights, to what degrees, under what contexts, should
be centrally managed. Thus it is convenient to add/remove
an employee by changing a few records in a database at the
(well-protected) backend, without making changes at a
huge amount of objects one by one. The access to objects,
however, should be distributed. When invoking a permitted
function on an object, a subject should be able to do so via
direct connectivity to the object, without detouring to other
entities including the backend. This will ensure both avail-
ability and responsiveness of command execution.

Unfortunately, such access control for enterprise envi-
ronments has not been studied in existing work. In this
paper, we propose Heracles, an access control system that
achieves fine-grained access control, centralized policy and
distributed execution at enterprise scale. Heracles adopts a
capability based approach where a subject requests from
the backend secure, unforgeable tokens depicting her access
rights to certain objects. Once a token is obtained, the access
no longer involves the backend. The subject includes the
token in her commands to the target object, which checks
the token and the commands before executing the invoked
functions. Our contributions are as follows:

� We design a 3-tier IoT access control architecture for
enterprise environments, consisting of the backend,

� The authors are with the Electrical and Computer Engineering, Stony
Brook University, Stony Brook, NY 11794-2350 USA. E-mail: {qian.zhou,
mohammed.salah, fan.ye, yuanyuan.yang}@stonybrook.edu.

Manuscript received 8 July 2019; revised 27 Feb. 2020; accepted 24 Mar. 2020.
Date of publication 2 Apr. 2020; date of current version 1 July 2021.
(Corresponding author: Fan Ye.)
Digital Object Identifier no. 10.1109/TMC.2020.2984700

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021 2701

1536-1233 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7890-0664
https://orcid.org/0000-0001-7890-0664
https://orcid.org/0000-0001-7890-0664
https://orcid.org/0000-0001-7890-0664
https://orcid.org/0000-0001-7890-0664
https://orcid.org/0000-0002-0131-6424
https://orcid.org/0000-0002-0131-6424
https://orcid.org/0000-0002-0131-6424
https://orcid.org/0000-0002-0131-6424
https://orcid.org/0000-0002-0131-6424
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
https://orcid.org/0000-0001-7296-9222
mailto:qian.zhou@stonybrook.edu
mailto:mohammed.salah@stonybrook.edu
mailto:fan.ye@stonybrook.edu
mailto:yuanyuan.yang@stonybrook.edu

resource-rich objects and resource-constrained objects.
It supports fine-grained degrees of function invoca-
tion, convenient centralized policy management and
robust, responsive distributed command execution
(i.e., access) at enterprise scale.

� We quantitatively analyze Heracles and an alterna-
tive approach of access control list (ACL) based dis-
tributed execution. Heracles is much more efficient
and scalable under frequent changes of policies and
subject memberships, a common phenomenon in
enterprise environments. It eliminates or reduces by
10x–100x the updating overhead in many situations.

� We offer solutions to two features desired by enter-
prise IoT: 1) an attribute-based access strategy for
efficient bulk operation which controls a category of
objects using a single command; 2) a delegation-
based strategy to improve the responsiveness of
resource-constrained objects during execution.

� We implement our design, and conduct extensive
analysis and experiments on a testbed consisting of a
mixture of 18 resource-rich objects and extra con-
strained objects. The results show that Heracles has
secure access control, scalable updating, and agile
responsiveness: it takes only 0.57 second to access 18
objects which are scattered 1–9 hops away from a
subject, and execution on a 1-hop or 2-hop object
needs only 0.07 or 0.13 second respectively.

2 MODELS AND ASSUMPTIONS

Node Type. The network consists of three types of nodes:
backend servers, subject devices, and objects. The backend
is well protected and run by human administrators. It main-
tains the profiles of registered subjects (possibly their devi-
ces) and objects; it also stores and updates access rights.

A subject is a personwho uses a subject device (e.g., smart-
phone) to interact with objects. We assume the subject device
has communication interfaces (e.g.,WiFi radios), Internet con-
nectivity to the backend, and reasonable computing/storage
resources (e.g., > 2GHzCPU, tens of GBs of storage are com-
mon among smartphones). An object is an IoT device, or a
“Thing”. Objects have different amounts of resources: many
are small ones with constrained hardware (e.g., Mica2, Ardu-
ino class: smoke/presence/fire detectors, light bulbs), while
medium or large ones have space and power for moderate
hardware (e.g., Raspberry Pi class: surveillance cameras,
coffee makers, air conditioners, wall outlets). In the 3-tier
architecture, small ones are member objects, medium/large
ones are leader objects, and they are assigned different respon-
sibilities. Besides, a target is the object that a subject attempts
to operate, and it can be either a leader or a member one. Sub-
ject devices and objects together constitute a ground network.
We assume the backend, subject devices and objects are
roughly time synchronized (e.g., within tens of seconds). We
also assume the backend, subject devices and leader objects
have enough computing resources to run public-key crypto-
graphic algorithms (e.g., ECDSA, ECDH), while member
objects may be able to run them only occasionally. Objects
may have diverse communication interfaces, e.g., besides
WiFi and Bluetooth, many IoT devices use ZigBee, Z-Wave,
etc. We focus on security design above the network layer, and
assume network connectivity exists among all nodes (e.g., via

bridging devices with multiple radios), so does multi-hop
routing [6], [7] in the ground network.

We assume objects are largely static once installed, thus the
topology of the ground network is stable except occasional
deployment changes such as addition/removal of objects. A
subject device is moving with its owner, thus mobile, but the
movement speed is usually slow (e.g., a person walking
around). We assume many objects, especially leader ones,
have enough energy (e.g., door locks, light bulbs, air condi-
tioners and surveillance cameras are all wall-powered). We
do not study energy-saving techniques (e.g., duty cycling) in
this paper, but they can be applied orthogonally to battery-
powered objects.

Network Scale. We present unique enterprise-scale IoT
properties that distinguish enterprise IoT from home-scale
IoT, especially on typical scales of several aspects, where
10i; i 2 Z denotes an order of magnitude. E.g., 100 means
several and 103 means thousands. They are intended to pro-
vide a rough sense, and not to be interpreted literally; actual
systems may have smaller or larger scales.

1) Huge Subject/Object Amounts. An enterprise may have
104 � 105 subjects (e.g., Google has 98K employees). Accord-
ing to our field study (Section 10), even a 2-story building
may have� 2K objects, and there can be manymore stories/
buildings in a university campus or big company. Thus an
enterprise can easily have about 104 � 105 objects in total.
Note that in reality a subject has access rights to only a frac-
tion of all the objects, of which the number is denoted as N ,
around 102 � 103.

2) Heterogeneous Subjects/Objects. Subjects can be classified
to different categories based on their various attributes (e.g.,
departments, groups, positions), so are objects, based on
device types, installation locations, etc. A subject usually
belongs to k (100 � 101) subject categories; a subject category
may have access rights to c (100 � 101) object categories,
with n (101 � 102) objects in each (E.g., “all the devices in
Room X”: 101; “the lights on the 2nd floor”: 102). A subject
category has m (101 � 102) subjects. E.g., “the students in
Class A”: 101; “the employees in Department B”: 102.

3) Possibly Frequent Subject Churns. In enterprises,
employee entry/exit or promotion/demotion/rotation hap-
pen all the time. They may affect the access rights for subject
individuals/categories. Such changes must be effectuated
quickly and efficiently on related objects. Otherwise autho-
rized users will fail to access new services timely, while
unauthorized users continue to have access to services they
are no longer eligible for. E.g., once a subject leaves the
enterprise, all the N (102 � 103) objects she could access
should stop accepting and executing her commands.

Data Caching & Discovery. We assume a data caching and
discovery mechanism like PDS [8] exists. Independent data
entities (e.g., public key certificates) protected by public-key
signatures, are widely propagated and cached in the ground
network. Due to multiple copies of an entity cached in dif-
ferent nodes, the entity can be discovered with higher robust-
ness and responsiveness.

3 DESIGN GOALS

Fine-Grained Access Control. The system should be able to
specify under what contexts a subject is allowed to invoke
on an object what functions with what parameters. This

2702 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

comes from the heterogeneous subjects/objects property. Coa-
rse grained all-or-nothing access control works fine for
homes, where family members are granted full access rights
while strangers nothing. In enterprise environments, how-
ever, subjects are heterogeneous (e.g., in departments, posi-
tions), thus have diverse responsibilities and access rights.
This makes fine access control granularity necessary.

Three security goals should be achieved: authenticity is to
ensure a party is indeed the claimed one; integrity is to
ensure messages are not forged or altered by adversaries;
freshness is that messages received are generated recently,
and this prevents replay attacks where adversaries simply
record and replay a previously sent legitimate message.

Centralized Management. The editing of node profile and
access right information should be conducted at a single
point (i.e. the backend), including adding/removing a sub-
ject/object, a category of subjects/objects sharing certain
characteristics, and adding/removing a policy which
describes which subject (category) has what access rights to
which object (category). This centralized strategy makes the
system easy to manage: the administrator does not need to
make changes in a large amount of nodes one by one.

Robust & Responsive Execution. If the backend must be
involved when subjects execute commands on objects, a
total loss of access can happen upon a backend machine fail-
ure or a loss of the connection. Despite dedicated mainte-
nance, such failures still occur occasionally in enterprise
environments. We need distributed execution such that
access is still available upon such failures. Besides, the
latency from command issuing by subjects to execution by
objects should be small for positive user experience.

Scalable Updating. Any change made on the backend (e.g.,
policy, subject addition or removal) must be quickly propa-
gated and effectuated on the affected objects, to ensure valid
commands are accepted and invalid ones rejected. The over-
head is naturally small in smart homes, but large in enterprises
due to the huge subject/object amounts property and the frequent
subject churns property, which may lead to more updating fail-
ures anddelays, compromising the system. The updatingmust
be fast and efficient tomake the system secure and scalable.

Non-Goals. We discuss strategies to alleviate the harm of
node compromise and denial-of-service attacks which waste

system resources by dumping many invalid messages, but
complete solutions are out of the scope. Physical level jam-
ming, attacks targeting routing or confidentiality/privacy
are not our research topics, neither is trust management.

4 SYSTEM OVERVIEW

There are four main interactions in the system (Fig. 1). We
first present the design concerning leader objects only, and
introduce that for member objects in Section 7.

1) Commission. To join the system, a subject/object must
be registered at the backend out-of-band (e.g., manually by
a human administrator), which signs and issues it a private
key, a public key certificate (CERT) and a profile (PROF).
The subject/object makes its CERT/PROF propagated and
cached by nearby objects in the ground network.

2) Discover. The subject device proactively discovers [8]
nearby objects by querying their CERTs/PROFs. PROFs
contain human-readable descriptions so the subject gains
knowledge of which objects provide what functions.

3) Request. The subject sends a signed request (REQ) to
the backend, asking for a ticket (TKT)—a token she can use
later to invoke certain functions on certain objects. The back-
end verifies the REQ, examines the access right database,
and issues her a signed TKT which carries the requested
capabilities and will get expired after some time.

4) Execute. The subject operates the target by sending a
command (CMD), which carries a TKT proving the authori-
zation for its operation. It may be forwarded [6], [7] towards
the target by multiple objects. The target checks that the
CMD is legitimate and then executes the function specified
by the CMD; otherwise it rejects the CMD. A response
(RES) is sent back to the subject.

5 INTERACTIONS AMONG NODES

Before presenting the details in the four interactions, we
comment a bit more on the backend. It maintains the pro-
files stating the attributes of every registered subject/object,
and subjects’ fine-grained access rights to objects.

Fine-Grained Access Constraints. Given the same object,
different subjects may be allowed for different functions, or
different parameters, time ranges, invocation counts, etc. for
the same function. A regular employee can set the thermo-
stat within a normal temperature range, but a repair techni-
cian may set extreme temperatures for testing. A janitor
may open all locked doors before 8 AM for cleaning, but
loses access during business hours. An external UPS driver
may get a one-time access token to raise the storage door
once to slip in packages. Formally, a constraint is expressed
as ðtype : [itemÞ, with type indicating what to constrain
(e.g., parameters) and a union of item s together specifying
allowed values. An item here is either a set (denoted as
fx; y; . . .g, e.g., parameter set {“on”, “off”}) or an interval
(denoted as ½x y�, e.g., time range [9 17]).

5.1 Commission

A subject must first register at the backend out-of-band.
Certain proofs (e.g., government/company issued IDs) may
be needed. Then the backend assigns her an ID, a private
key, a signed public key certificate (CERT), a signed profile

Fig. 1. The backend run by the administrator maintains the profiles and
access rights of registered subjects and objects. A subject discovers
objects in proximity (e.g., within 2 hops), and requests a ticket describing
her access rights to the objects she is interested in operating. She then
sends a command to operate the target (e.g., air conditioner); the
command carries the ticket to prove its operation authorization.

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2703

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

(PROF), together with the backend’s public key (Kpub
Admin).

Also, the backend adds the subject’s access rights to its data-
base. After loading such data into her devices (e.g., smart-
phone, tablet), the subject publicizes her CERT/PROF in the
ground network so they are widely cached and can be easily
retrieved [8], [9] by other nodes.

An object follows a similar process. Its PROF describes: i)
which: information like ID, human-readable name, type (e.g.,
door lock), make/model, version, etc.; ii) where: information
about its location, e.g., “Light Engineering Building, Floor 2,
Room 217” would distinguish those devices in a particular
room/building; iii) functions: the allowed operations and
associated parameters. E.g., a lamp’s functions may include
“set_brightness”, with an integer between 1–100.

The content of PROF can be structured (e.g., in JSON,
XML) such that it can be queried. One option for the
human-readable name is a hierarchical one embedding the
object’s location, e.g., /StonyBrookUniversity/LightEngi-
neeringBuilding/Floor2/Room217/Light1. Such names can
optionally be used to route [7] a command to the target for
command execution (Section 5.4).

5.2 Discover

The subject device discovers nearby objects by querying their
CERTs/PROFs. PROFs contain descriptions so both the
human user and her device gain knowledge of which nearby
objects provide what functions. Our design does not enforce
any particular discovery mechanism, either an IP-based or a
data-centric one works. Data-centric caching and discov-
ery [8], [9] may be preferred for their data acquisition speed
and robustness.

5.3 Request

The subject sends a request (REQ) to the backend, asking for
a token she can use to invoke certain functions on certain
objects. The backend verifies her REQ, examines the access
right database to ensure she does have those rights, and
sends back a signed ticket (TKT) which describes the
requested capabilities.

ID-Based & Attribute-Based Ticket.Heracles offers both ID-
based TKTs and attribute-based TKTs, preferred in different
situations to achieve better flexibility or reduce message
overhead. An ID-based TKT specifies a set of objects by enu-
merating their IDs, while an attribute-based one uses attri-
bute predicates to describe categories of objects sharing certain
characteristics (e.g., ftype ¼ lamp ^ floor ¼ 2g means all the
lamps on the 2nd floor). An attribute-based TKT is used to
achieve efficient bulk operation (i.e., one command controls
a large group of objects), which will be introduced in detail
in Section 6.

Subject S sends an REQ (Fig. 2) including: 1) IDS : a
unique identity number of S ; 2) O: the object to which S
requests her access rights, which is either an object (speci-
fied by its identity IDO) or object category (specified by
predicate AttrO). f. . .g denotes a set so multiple objects or
object categories can be included; 3) F : an O’s function to
which S requests her access rights; 4) C: a set of constraints

(e.g., parameters) on F ; 5) LIFE: the lifetime by which the
TKT expires; 6) T : a timestamp for REQ’s freshness. Note
that F , C and LIFE are optional in an REQ: if they are left
empty, the backend can decide what functions, constraints
and lifetime to include in the TKT based on certain rules.

Timestamp T is included for defending against replay
attacks. Given the maximum time synchronization error e,
the backend keeps the hash codes of all the REQs received
in the recent time window e. An REQ is considered fresh if
the difference between T and the backend’s local time is
less than e, and its hash code is not seen in the window. The
backend has enough computing/storage resources for that.
Other anti-replay mechanisms include: challenge-response,
which requires a two-round handshake, significantly
increasing the latency; monotonic counters, which require a
counter for each subject-object pair, and are much easier to
predict than nonces. Thus we choose the combination of
timestamps and hash codes for freshness. ½. . .�SIGX denotes
the plaintext in brackets followed by a public-key signature
generated by entity X for the content in brackets. SIGS and
SIGAdmin protect the authenticity and the integrity of REQ
and TKT so they cannot be forged or altered.

Every TKT has an identity IDTKT such that it can be ref-
erenced later in command execution (Section 5.4) or ticket
revocation (Section 5.5). This improves efficiency and
responsiveness. Each access right stored in the backend
database also has an identity IDAR, carried by every TKT
generated based on this access right. This ID is required for
an attribute-based TKT but not for an ID-based one. IDAR is
used for efficiently referencing and revoking all the TKTs
generated based on the access right (Section 6).

5.4 Execute

The subject sends a command (CMD) to the target to invoke
some function. The CMD might be relayed by multiple
objects towards the target using a routing protocol [6], [7].
The target verifies the CMD and if legitimate, it carries out
the invoked function; otherwise it rejects the CMD. In both
cases a response (RES) is sent back.

ID-Based & Attribute-Based Command. An ID-based CMD
carries an ID-based TKT and specifies target objects with ID
enumeration, while an attribute-based one carries an attri-
bute-based TKT and targets object categories using predi-
cates. An attribute-based CMD is used for bulk operation,
which will be introduced in detail in Section 6.

Subject S sends a CMD (Fig. 3) including: 1) IDCMD: a
random, unique identity number of this CMD; 2) O: the tar-
get, expressed as either IDO or AttrO; 3) F , P : the functions
and parameters that S attempts to invoke on O; 4) TKT : the
ticket (Fig. 2) proving the authority of S to invoke F , P on
O; 5) T : a timestamp for CMD’s or RES’s freshness; 6) State,
Data: execution error code and return data.

When an object receives a CMD, it will find out if it is a
target by comparing its ID (if the CMD is ID-based) or
attributes (if attribute-based, and recall that an object knows
its attributes from its PROF) with the CMD’s O. The com-
mand execution is asynchronous so a subject device does

Fig. 2. S ubject sends an REQ to B ackend and receives a TKT. Fig. 3. S ubject sends a CMD to T arget object and receives an RES.

2704 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

not block on any single CMD. Here the same IDCMD is used
in CMD and RES so the subject device knows which RES
corresponds to which CMD, and may take further actions
for those CMDs getting no RESs (e.g., retransmission). The
operation part ðO;F; P Þmust be a subset of the access rights
depicted by TKT to pass authorization check conducted by
the target.

The freshness of CMD/RES is protected in a similar way
to REQ. But here IDCMD effectively serves as a nonce and is
kept in the recent time window e. As long as the time syn-
chronization protocol can achieve a reasonably small e (e.g.,
tens of seconds), the number of remembered IDCMDs will
not be many. SIGS and SIGTarget protect the authenticity
and the integrity of CMD and RES.

5.5 Ticket Revocation

A subject may lose authorization she once had (e.g., being
discharged, moved to a different position). Thus issued
TKTs carrying unexpired access rights must be revoked.

To this end, the backendmust keep all the TKTs it has issued
before their expiration times.Given any change in access rights,
it must examine and identify those carrying invalid but unex-
pired authorizations. It generates a signed ticket revocation
message (REV), which can have two forms. The first form
includes the IDs and expiration times of all the TKTs to be
revoked. The REV is publicized and widely cached among
nodes. Objects will add the IDs, expiration times of revoked
TKTs to their local ticket revocation lists (TRL). Upon expira-
tion (actually slightly later, at least e after expiration) a revoked
TKT’s ID will be removed from the TRL. To avoid whole-
network propagation of a REV affecting only a few TKTs and
objects, the backend may send the REV to those objects and
their vicinity only. Any CMD referencing a TKTwhose ID is in
the TRL will become invalid. The second form is for attribute-
based TKTs only, and details can be found in Section 6.

6 BULK OPERATION

Bulk operation uses a single command (CMD) to operate a
possibly large group of objects with common characteristics.
It is common in enterprise IoT. E.g., a student uses one
CMD to turn off all the devices in her lab when leaving
work, or a manager uses one CMD to trigger all the alarms
in the building he is in charge of to notify people to evacu-
ate, or a janitor turns off all the lights on a floor when finish-
ing a night tour. An attribute-based CMD achieves the goal,
using two attribute predicates: 1) In the ticket (TKT) refer-
enced by the CMD, one predicate O specifies the object cate-
gory to which the subject has access rights; 2) In the CMD,
the other predicate O specifies the object category that the
subject attempts to operate, i.e., the targets.

A primitive predicate is a triple ðattribute, operator, valueÞ,
and possible operators in our system include: ¼; 6¼; < ; > ;
�;�;2 . A complex predicate consists of multiple primitive
ones combined in logic AND ^, OR _, NOT :, etc. A simple
form is to use logic AND only. E.g., “all windows in Room
217” can be expressed by ftype ¼ window ^ room ¼ 217g. We
implement this design and the support for other forms can be
added if necessary.

A bulk operation CMD can be propagated among peer
devices directly. This is suitable when targets are within a

small or medium scope, e.g., one or a few rooms, floors. Such
a CMD is forwarded by an object to its neighboring objects,
hop by hop till the CMD reaches every possible target. This
P2P strategy does not rely on backend connectivity, and
achieves better execution robustness and responsiveness.
When target objects are spread over large areas (e.g., in
another building), hop-by-hop routing may be slow or even
unavailable. In such cases the CMD can be sent via the back-
end directly to the destination or its vicinity, and then propa-
gated among peers.

Message Overhead. An ID-based CMD can also be used for
bulk operation if its TKT enumerates all the target IDs, but
it will be short and efficient only when small numbers of
objects are included. Since its size grows linearly as more
object IDs are enumerated, the TKT may become too large,
incurring large overhead and long latency in operation.
Besides, to operate a newly added object, a new TKT must
be requested to include that object’s ID.

In contrast, an attribute-based one’s length only increases
with the number of object categories specified, regardless of
how many objects inside. Also, it can be used to access new,
previously unknown objects. E.g., to access a newly installed
light, if ID-based, the subject has to request a new ticket that
covers the light’s ID; however, if she holds an attribute-based
TKT specifying her rights of “operating lights”, she does not
need to request another ticket.

Ticket Revocation. An attribute-based TKT can be revoked
by both forms of revocation messages (REV): when the
number of TKTs to be revoked is small, we use the first
form (Section 5.5) referencing IDTKT s; when an attribute-
based access right is removed from the backend, the num-
ber of affected TKTs may be large (e.g., �103) because the
access right may have been requested by many subjects in a
category, thus enumerating IDTKT s is inefficient. In this
case IDAR is referenced to efficiently revoke all the TKTs
carrying the access right.

7 LEADER AND MEMBER BINDING

Due to the abundance of medium or large objects (i.e. leader
objects, as defined in Section 2) with sufficient power and
resources in enterprise environments, we leverage them to
create a hierarchical structure where leader objects form the
“backbone” while member objects associate with them as
“leaves”. The leaders will handle those frequent, compute
or energy intensive responsibilities (e.g., public-key crypto-
graphic operations, message forwarding) on behalf of their
members. A member depends on its leader(s) to receive and
verify commands from subjects, and forward responses
back to them. This design allows us to leverage more pow-
erful Things to serve less capable ones. The interactions are:

Commission.Amember object follows almost the same reg-
istration process at the backend as a leader one does, except
that its name in the profile (PROF) may not reflect its location.
The reason is amember object, usually small and free of wired
power supply, has a higher chance of being moved. Thus it is
better not to carry its location in its PROF such that the back-
end does not have to issue a new PROF often. Instead, we
obtain its location by checkingwhich leader it is using.

Bind. Each member object must “bind” to at least one
leader object. A member object broadcasts messages seeking
leaders from one-hop neighbors, and leader objects that are

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2705

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

willing to accept more members will respond. The member
object chooses one or multiple as its pre-leader(s) (e.g.,
based on RSSI) and starts to establish a shared secret and
generate a binding notification (BIND). The BIND reveals
the member object’s location: it tells which leader(s) the
member object associates with, thus should be used as the
destination when sending commands to operate the mem-
ber. Its format is ½½IDBIND;L;M;LIFE; V �SIGM �SIGL, where
IDBIND, L, M, LIFE, V denote the BIND’s ID, leader’s ID,
member’s ID, BIND’s expiration time and version number.
An unexpired BIND will be overridden by another BIND
with the same L and M but a higher version. It is generated
and signed by the member, then sent to, signed and publi-
cized by the leader. This nested double signing prevents a
leader or member from unilaterally publicizing a forged
bilateral relationship.

Our message flow of shared secret establishment and
BIND generation is given in Fig. 6, and it is inspired by the
design of TLS handshake [10]. ECC-based TLS supports
multiple key exchange algorithms, with many parameters
configurable (e.g., elliptic curves, point formats). By fixing
the key exchange algorithm at ephemeral ECDH and other
parameters (e.g., curve is secp224r1), we reduce the number
of messages to three, while generating BIND meanwhile.

Member object M starts by sending a nonce NM . After
receiving it, leader object L generates a key exchange mes-
sage EXCHL ¼ NL; P

pub
L ; ðNM;NL; P

pub
L ÞSIGL, where NL

and Ppub
L denote the leader’s nonce and key exchange mate-

rial (an ECDH public parameter generated by L, Step l1).
NM , NL are used in challenge-response, for freshness.
SIGXð. . .Þ is a signature signed by entity X for the content
in parentheses. SIGL is generated (Step l2) to authenticate
the ECDH key exchange material. L’s public key certificate
CERTL and EXCHL are sent toM.

After receiving them, M first verifies the signature in
CERTL (Step m2). If valid, it uses L’s public key to verify
SIGL in EXCHL (Step m3). If valid, it generates and signs a
BIND (Stepm4). Also, it generates EXCHM ¼ Ppub

M ; ð�ÞSIGM ,
where Ppub

M denotes the member’s key exchange material and
� denotes all the messages sent and received so far. ð�ÞSIGM

is generated (Step m5) to protect authenticity and integrity.
Note that the Ppub

M used here is generated beforehand (Step
m1) to speed up the binding process. CERTM , BINDM ,
EXCHM are all sent to L, andM starts computing the ECDH
shared secret.

Similarly, L verifies the signature in CERTM , and then
ð�ÞSIGM . After that it verifies the signature of BINDM , and
if valid, it appends its own signature to make it doubly
signed. At last, it starts computing the ECDH shared secret.
Now both the member and the leader have the shared secret,
and they use a key derivation function (e.g., HKDF [11]) to

convert the secret to a session key for their future conversa-
tions. Member objects launch this handshake periodically
(e.g., a few times a day) or when their leaders change, to
update session keys and binding relationships.

Discover & Request. A leader publicizes its members’
CERTs/PROFs in the ground network. Then discovering a
member object and requesting a ticket (TKT) for it becomes
exactly the same as dealing with a leader object.

Execute. When a leader receives a command (CMD), it
will find out if it or its member is a target by comparing
their IDs (if the CMD is ID-based) or attributes (if attribute-
based) with the CMD’s O. If the target is its member, it will
check if the CMD is legitimate and if so, send to the member
an adapted CMD (Fig. 7) with the same IDCMD, F , P , T , pro-
tected by a message authentication code (MAC) generated
from their session key. The MAC ensures authenticity and
integrity, and the freshness check is done similarly. The
leader replaces the public-key signature with a MAC
because it has sufficient resources/power to finish such
compute/energy intensive tasks at reasonable speed but its
members do not. In this way a member only needs to verify
MACs, which incurs much less time and energy.

8 SECURITY ANALYSIS

Threat Model. We assume the backend is trustworthy and
well-protected. Also, communication between the backend
and subject/object devices is secure.

We assume breaking the cryptographic algorithms (e.g.,
ECDSA, ECDH) are computationally infeasible when long
enough keys are used (e.g., 128-bit). Attackers can capture,
inject, modify and replay messages sent over the communi-
cation channel. Sources. Attackers may be external—they are
not registered at the backend thus have no backend-signed
public keys, or internal ones that are registered but go rogue.
Roles. Attackers may behave passively as eavesdroppers, or
actively to impersonate subjects or objects and interact with
benign nodes. Targets. Attackers may target authenticity,
integrity, freshness, and availability.

Fig. 6. M ember and L eader establish a shared secret and generate a
BIND.

Fig. 5. B ackend sends an REV (the 2nd form) to O bject, telling it to
revoke all the tickets carrying the access right with identity IDAR.

Fig. 4. B ackend sends an REV (the 1st form) to O bject, telling it to
revoke the ticket with identity IDTKT .

Fig. 7. L eader sends an adapted CMD to M ember and receives an
adapted RES.

2706 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

Like TLS and many other algorithms, the security of ours
is on the premise that secret information is kept to its owner,
and is computationally infeasible to compromise, and cannot
be obtained from sources outside of the channel. However, in
reality it can, e.g., attackers have military computing resour-
ces, or they leverage malware or social engineering to steal
private keys from users/devices. Resisting those attacks is
out of the scope. Our analysis below shows that: 1) our sys-
tem resists well to attacks from external adversaries that tar-
get authenticity, integrity and freshness; 2) it does not
address attacks from internal adversaries or DoS, but we dis-
cuss strategies which possibly alleviate the harm.

Discover. External leader, member objects may pose as
benign ones by propagating profiles (PROF), waiting for
subjects to discover and later execute commands (CMD) on
them. Because they do not have properly signed PROFs, it
is easy to detect and drop them. Internal ones, however, are
able to entice subjects to operate them, thus collecting infor-
mation about the subjects’ locations, operation behaviors,
etc. Such privacy issues are beyond the scope.

Bind. An external leader object may cajole benign mem-
ber objects into choosing it as their leader and then manipu-
late them. But it has no private key or public key certificate
(CERT) assigned by the administrator, and cannot accom-
plish the handshake for shared secret establishment and
binding notification (BIND) generation. For the same rea-
son, an external member object will fail in finding a leader.
In contrast, a malicious internal leader object is able to
recruit benign members. A member object can have multi-
ple leaders (only one is active at a time) and change the
active one from time to time, reducing the probability of
accepting malicious CMDs. Similarly, a malicious internal
member object can associate with benign leaders, but it can-
not cause much harm beyond itself. Besides, a malicious
internal leader object may publicize fake BINDs, but our
double signing strategy foils that.

Request. An external subject device cannot succeed in
requesting tickets (TKT) due to the lack of a valid private
key thus valid signatures. A replayed request will fail due
to the protection of timestamp and hash code. A malicious
internal subject device can sign properly, thus request TKTs
successfully. We may use extra mechanisms (e.g., operation
behavior analysis) on the backend to detect compromised
subject devices. Once detected, the subject device will not
be issued any new TKT by the backend, and the TKTs it has
obtained will be revoked.

Execute. An external subject device’s forged/altered
CMDs will not get accepted by leader objects due to the pro-
tection of signatures, neither will its replayed ones because
we have timestamp and nonce jointly for resistance. The
node may keep sending invalid CMDs to waste resources of
benign nodes. To mitigate this harm, we may ask intermedi-
ate relaying nodes to examine CMD integrity/freshness
(originally such checks are conducted by the target only).
This en-route check drops an invalid CMD before it travels
far, reducing the attack range.

An external node may mimic a leader object. Its CMDs to
member objects will be found illegitimate for either wrong
message authentication codes or being obsolete. As for DoS
attacks, the malicious leader object may send large amounts of
invalid CMDs to member objects around, attempting to drain

their batteries. A member object may regard being awakened
too often as abnormality and report it to the administrator,
who will take further countermeasures. Similarly, an external
member object will fail in making its forged/altered/replayed
responses (RES) accepted by a leader object. Note that usually
a leader object has sufficient energy fromwired power supply
and does not have the dead battery problem, but a similar
detection strategy can be applied to notify the administrator.

A malicious internal subject device could get its CMDs
executed, attacking authenticity and integrity successfully.
Faced with such situations, the backend can issue subject
devices TKTs of constrained access rights and short lifetimes
to alleviate the damage to some degree. The attacker, though
having compromised the subject’s identity, can only exert
the access rights offered by the TKTs stored in the device.
Thus the less capable the TKTs are, the less harm the attacker
can do. The attacker may try requesting more TKTs, but as
mentioned, the backendmay detect and reject it.

If a leader object gets compromised, all of itsmemberswill
be indirectly compromised and execute the attacker’s CMDs.
But as mentioned, a member object may keep switching
from one leader to another, reducing the amount of mali-
cious CMDs it receives. As for a malicious internal member
object, it is under control of the attacker. Possibly, its leader
may detect its abnormality, e.g, finding it does not follow a
legitimate CMD, and then inform the administrator.

9 UPDATING OVERHEAD ANALYSIS

When the administrator adds/removes a subject/object
individual/category, or edits a policy, the change needs to
be immediately synchronized to the affected objects on the
ground. Otherwise authorized users will fail to access new
services timely, while unauthorized users continue to have
access to services they are no longer eligible for. We define
updating overhead as the number of objects that need to be
notified immediately. We conduct quantitative analysis and
find that compared with an ACL based strategy, our capa-
bility based design is able to: i) eliminate the updating over-
head when adding a subject, policy or subject/object
category; ii) reduce the overhead by 10x–100x when remov-
ing a subject or ID-based policy; iii) reduce the overhead
slightly in other cases. As a result, Heracles achieves effi-
cient updating, thus scalable and secure enterprise IoT
access control. We outline how ACL and Heracles work dif-
ferently before presenting overhead comparison.

ACL. In an ACL based system, each object stores an
access control list [12] specifying by which subjects it can be
accessed, and what functions (i.e. access rights) are allowed.
An ID-based ACL specifies subjects by enumerating their
IDs, e.g., the access right part is fIDS; fF;Cgg, where IDS ,
F , C are a subject’s identity, allowed functions, constraints.
To execute a command (CMD) on an object, a subject needs
to prove her identity (e.g., using her signature), and the
object will accept it only if her ID is in the list and the func-
tions/constraints match. An attribute-based ACL describes
subject categories using predicates, i.e., fAttrS; fF;Cgg.
And in command execution, a subject needs to prove her
attributes (e.g., by attaching her profile (PROF) with com-
mands). Only if her attributes match the predicates (AttrS)
may the command be accepted.

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2707

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

Capability. In a capability [12] based system, a subject
holds a ticket (TKT) stating her access rights to certain
objects. The ticket is signed by a trusted common authority
(e.g., the administrator) so nobody can forge it. An ID-based
TKT specifies objects by enumerating their IDs, while an
attribute-based one uses attribute predicates (Section 6). In
either case the subject sends a TKT together with her CMD,
and the object verifies the TKT to find out if the subject is
authorized to access it.

9.1 Symbol Definition and Magnitudes

We first introduce as follows the symbols we use in updat-
ing overhead expressions. Explanation for the magnitude
values ofN; k; c; n;m can be found in Section 2.

1) Object Amounts. An enterprise may have 104 � 105

objects in total. In reality a subject has access rights to only a
fraction of all the objects, of which the number is denoted as
N in an ID-based system, around 102 � 103.

2) Categories. A subject usually belongs to k (100 � 101)
subject categories; each subject category may have access
rights to c (100 � 101) object categories, with n (101 � 102)
objects in each. Thus, in an attribute-based system, the num-
ber of objects a subject can access is kcn, whose order of
magnitude is consistent with N in an ID-based system. A
subject category hasm (101 � 102) subjects.

Note that one ID-based policy specifies one subject’s
access rights to one object; one attribute-based policy
relates one subject category and one object category, thus
n objects.

3) Policy Service Rates. A policy is called in service if there
exists a TKT which was generated based on it and is not
expired yet. For simplicity, we assume a subject requests
dozens of (101) ID-based TKTs and a few (100) attribute-
based TKTs per day, with each having a 1-day lifetime; her
N ID-based access rights have an independent identical
chance to be requested (if ID-based), so are her kc attribute-
based access rights (if attribute-based).

Since an ID-based policy serves exactly one subject, the
policy is in service if and only if that subject has requested a
TKT for access rights specified by it that day. So ID-based
policy service rate u ¼ 101=N ¼ 10�2 � 10�1.

However, an attribute-based policy serves a subject cate-
gory which has m subjects. The policy is in service as long

as at least one subject among the m has requested a TKT gen-
erated based on it that day. The probability that one subject
requests it is h ¼ 100=kc ¼ 10�2 � 10�1, and attribute-based
policy service rate Q ¼ 1� ð1� hÞm. Fig. 8 shows that Q is
less than but close to 100 percent most of the time, unless
the access right is for unpopular IoT service (e.g., u ¼ 10�2)
and there are not many subjects (e.g., m < 100) in the sub-
ject category served by the policy.

9.2 Updating Overhead Comparison

We present the updating overhead of four strategies
(Tables 1 and 2): ACL and Heracles (capability based), with
each having an ID-based variant and an attribute-based
variant.

1) ACL, ID-Based. An ID-based ACL system has the larg-
est updating overhead. When a subject joins/leaves, the
backend needs to immediately contact all the N (102 � 103)
objects that she can access, to add/remove her access rights
to/from their ACLs. When an ID-based policy gets added/
removed by the administrator, the corresponding object
always needs to be notified.

2) Heracles, ID-Based. Heracles adopts capability based
access control, and has remarkably smaller updating over-
head than ID-based ACL facing most operations. First, there
is no overhead when a subject/policy is added because now
it is the subject’s duty to request her tickets when needed.
This overhead shift mitigates not only the workload but
also the difficulty of updating, because: 1) a subject con-
sciously requests only the access rights she is about to use,
while in ACL all objects must be notified regardless of
whether they are to be accessed; 2) subjects share the updat-
ing work from the backend and each handles her own part,

TABLE 1
The Number of Affected Objects When Adding/Removing a Subject/Object/Policy

Compared to an ACL based strategy, Heracles reduces updating overhead: to 0;by 10x–100x; slightly, depending on which updating operation the
administrator performs.

TABLE 2
The Number of Affected Objects When Adding/Removing a Subject/Object Category

Fig. 8. The impact of subject category size on attribute-based policy
service rateQ.

2708 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

making it more robust against network failures—the back-
end cannot do much when finding some objects unreach-
able, but a human subject can respond flexibly, e.g., try
alternative network connections.

Second, the updating overhead is one or two orders of
magnitude smaller than ID-based ACL when a subject/pol-
icy is removed. It is because an updating message will be
sent to an object, telling it to revoke a subject’s ticket, only if
the subject requested a ticket targeting that object early that
day. If a policy is not in service (i.e., no ticket based on it
was requested), the corresponding object does not need to
be contacted when the subject or the policy is removed. As
introduced, an ID-based policy has a small service rate u

(10�2 � 10�1), so the overhead is reduced by 10x–100x.
3) ACL, Attribute-Based. Similar to ID-based ACL, an

attribute-based ACL system has large overhead. Compared
with ID-based ACL, its main advantage is when a subject is
added, no objects need to be notified. This is because the
ACLs stored by objects specify authorized subjects using
predicates instead of ID enumeration; later it finds a subject
authorized if the subject presents a valid profile showing
that her attributes meet the ACL predicates. But like ID-
based ACL, when a subject leaves, all the kcn (102 � 103)
objects she could access must be updated to reject her access
attempts in the future. As for policy updating, note that an
attribute-based policy relates one object category, thus n
(101 � 102) objects should be notified to update their ACLs
when the policy is added or removed.

4) Heracles, Attribute-Based. Heracles supports both ID-
based and attribute-based access, and it outperforms attribute-
based ACL in updating efficiency. First, it eliminates the
overhead when a subject/policy is added because the bur-
den has shifted to the subject/backend to obtain/issue
tickets properly. Second, similarly, one or two orders of mag-
nitude fewer objects need to be notified to revoke a subject’s
tickets when the subject is removed, because she only holds
tickets for hkcn (h ¼ 10�2 � 10�1) objects, among all the kcn
(102 � 103) ones she could access.

Third, when removing an attribute-based policy, Hera-
cles always has smaller overhead than attribute-based ACL
although the improvement may be slight. An attribute-
based policy relates n objects, which need to be notified for
ticket revocation only if the policy is in service (i.e., there
exist unexpired tickets generated based on it). Thus, the
expected value of updating overhead is Qn, compared to
ACL’s n. Though each subject has a small probability h to
put a policy in service, an attribute-based policy can be
requested by any of them (101 � 102) subjects, and the prob-
ability that at least one of them puts the policy in service can
be high (i.e. Q 	 100 percent, then Heracles and ACL have
similar overhead), especially when m is large. Limiting the
size of a subject category (i.e. m) makes updating overhead
smaller. E.g., whenm ¼ 10;Q ¼ 10% � 65% (Fig. 8).

Adding/Removing Categories. Table 2 shows the overhead
when adding/removing a subject/object category, and these
operations are for attribute-based systems only. As is seen,
Heracles eliminates the overhead when adding a category,
and reduces the overhead slightly when removing one. For
both attribute-basedACL andHeracles, the overhead of add-
ing/removing a subject category is c (100 � 101) times of that
of adding/removing a policy in that system, because a

subject category has access rights to c object categories. The
overhead of adding/removing an object category is the same
as adding/removing a policy, because each attribute-based
policy relates exactly one object category.

Adding/Removing Objects. In any of the four strategies,
when an object is added/removed, only that object needs to
be notified, so the overhead is always 1. Strictly speaking,
Heracles does not reduce the overhead in these two cases,
but the overhead is originally small enough, and can hardly
be further reduced to 0.

9.3 Impact of Updating Overhead on Security

Either ACL updating (if ACL based) or ticket revocation (if
using Heracles) messages need to reach the affected objects
immediately, otherwise valid subjects’ commands will be
rejected while invalid ones’ commands accepted. Larger
overhead in synchronizing access control related information
to objects results in higher vulnerability, becausemore objects
to notify inevitably leads to more updating failures/delays,
due to network failures, processing/transmission delay, etc.
Heracles greatly reduces the number of objects to notify, thus
chances of failures, achievingmuch stronger security.

Delay-Tolerant Updating. Besides the updating we have
analyzed so far which needs immediate completion, there
may be other updating activities. E.g., in an ACL based sys-
tem, objects periodically (e.g., every day) checkACL updates
from the backend; in Heracles, subjects request needed tick-
ets beforehand. Such updating activities (in both ACL sys-
tems andHeracles) are scattered throughout all the subjects/
objects and time of the day; additionally, they are delay-
tolerant. They are different from the updating incurred by
the administrator’s operation on the backend database,
which contacts objects in burst mode and is delay sensitive. So
they are less an issue for system burden and security, thus
not considered in our analysis.

10 EXPERIMENTAL EVALUATION

We have implemented our prototype including four com-
ponents of Heracles: the backend, subject devices, leader
objects and member objects. The backend program runs in a
server machine.We use a SamsungGalaxy S8 (2.3 GHzQuad
+ 1.7 GHz Quad CPU, 4 GB RAM) as our subject device, and
deploy 18 leader objects in a large room to construct a ground
networkwith diameter up to 9 hops, where each leader object
runs on a Raspberry Pi 3 (1.2 GHz Quad CPU, 1 GB RAM).
Besides, we use Arduino Mega 2560 (16 MHz Clock + 8 KB
RAM) as resource-constrained member objects. Different
radios can be used, as long as network connectivity and rout-
ing exist, and we use WiFi on our testbed: Pi has a built-in
WiFi module; the Arduino Mega 2560 is equipped with an
ESP8266module forWiFi communication.

We evaluate message overhead of commands, time cost
of cryptographic operations (e.g., signature signing/verifi-
cation), binding latency, and command execution latency.
Note that evaluation results like latency depend signifi-
cantly on factors like the radio, background traffic intensity,
routing protocol and cryptographic algorithms/parame-
ters/libraries chosen in implementation. Thus the perfor-
mance numbers should not be interpreted literally, but
rather revealing the likely ranges and magnitudes. Also,

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2709

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

though our design targets enterprise IoT, our testbed con-
sisting of 18 leader objects (and extra member objects)
which constitute a 9-hop network is sufficient for testing
command execution latency. In reality there will be more
objects, but hop count mostly would not be larger, because
most users will be controlling IoT devices in proximity. For
rare cases of distant targets (> 10 hops), commands can be
routed via the backbone Internet for better resilience and
shorter latency.

10.1 Command Message Overhead

By comparing the length of CMDs which are either ID- or
attribute-based in two real cases (Student Case and Admin-
istrator Case), we prove that the two are preferable in differ-
ent scenarios: ID-based CMDs are more efficient for small
amounts of objects in various categories (Student Case like),
while attribute-based ones excel in bulk operation that tar-
gets large amounts of objects in a few categories (Adminis-
trator Case like).

Field Study. Types and amounts of the objects in the two
cases are from a field study on our engineering building on
campus, which has two floors, with 32 offices/labs on the
1st floor, and 36 on the 2nd. A medium office/lab is used as
a representative which has 6 ceiling lights, 8 desk lamps, 5
computers, 1 door, 3 windows, 1 alarm and 6 other devices.
In total, there could be approximately 30 objects each room
and 2040 objects in this building, excluding those in rest-
rooms, lobbies or corridors.

Student Case. In this scenario, a graduate student requests
a TKT in the morning for certain objects installed in her lab,
for the functions she will probably use this day. There are 8
objects included: 2 ceiling lights, 2 desk lamps, 1 door, 1
window, 1 coffee maker, and 1 air conditioner. This TKT is
a representative covering a few objects in quite different cat-
egories, and later the subject will use it to operate a single
object at a time.

Administrator Case. In this scenario, an administrator of a
building requests a TKT for all the 408 lights and 68 alarms
in the building. This TKT is a representative covering great
amounts but limited categories of objects and will be used

for bulk operation. E.g., he uses it to trigger all the alarms
and turn on all the lights to evacuate people from the build-
ing when an emergency occurs.

Message Overhead. Fig. 9 (a) shows the length of ID- and
attribute-based CMD for both cases. First, in Student Case, an
ID-basedCMDhas 312 Bwhile an attribute-based one has 346
B. The former is shorter because this case has only 8 objects,
thus simply enumerating their IDs costs fewer bytes. Second,
in Administrator Case, an ID-based CMD has 2,128 B while
an attribute-based one needs only 256 B, which is 12 percent
of the former. It is because Administrator Case has 476 objects
but only 2 types (lights and alarms), thus 2 predicates are
enough to specify all of them, reducing the length of an ID-
based CMD by one order of magnitude. The length of attri-
bute-basedCMDonly increaseswith the number of object cat-
egories, regardless of howmany objects need to be covered.

10.2 Cryptographic Operation Time Cost

We test the computation time of operations related to public-
key signatures and message authentication codes on sub-
ject devices, leader objects and member objects, using
cryptographic libraries AndroidOpenSSL (default library of
Android), Java Cryptography Architecture [13] (built-in
piece of Java), and micro-ecc [14] (small and fast implemen-
tation of ECDSA/ECDH for 8-bit processors using C lan-
guage) respectively. Exactly which signature algorithm and
key size to pick is orthogonal to our design. We choose ECC
in our implementation because compared with RSA, it offers
similar security strength at a smaller key size [10], [15]. We
choose elliptic curve secp224r1 because: i) it achieves high
enough strength (112-bit, comparable to RSA 2048) with
short computation time; ii) it is supported by the libraries
across all the three platforms (Android, Pi andArduino).

Signature. First, a subject device needs only about 2 ms for
signature signing/verification, due to the device’s rich com-
puting resource. As for objects, as shown in Fig. 9 (b), on a
leader object it takes 13.4 ms for signing and 25.9 ms for veri-
fication. On a member object signing/verification costs 2.8/
3.2 seconds, which are two orders of magnitude larger than
those on a leader, thus not presented in the same figure. So

Fig. 9. Performance evaluation on message overhead, cryptographic computation time, binding latency, and command execution latency.

2710 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

far, we confirm that such public-key operations, when per-
formed on member objects, will lead to significant latency.
Thus they should only be conducted occasionally onmember
objects (e.g., in binding, which happens at most a few times a
day) instead of too frequently (e.g., command execution), to
avoid sluggish user experience.

RSA Versus ECC. RSA 2048 and ECDSA 224 have compa-
rable security strength, but the former is much less efficient
in both computation and signature length: i) though RSA
2048 has fast signature verification (9.9 ms on a leader
object), its signing time is 265.0 ms, about 20x as long as
ECDSA 224; ii) an RSA 2048 signature has 256 B while
ECDSA 224 needs only 56 B. We use ECDSA 224 in our
implementation.

HMAC. On the other hand, hash-based message authen-
tication code [16] (HMAC) is significantly less expensive
and can be generated at high speed by even a resource-
constrained member object, using 8.8 ms. And a leader
object spends only 0.7 ms. Thus, it is a good choice to use
signatures for authenticity/integrity protection on interac-
tions between subject devices and leader objects, and use
HMACs between leader and member objects. Heracles uses
this strategy: a leader object verifies a CMD’s signature
signed by a subject, and sends its member an adapted CMD
which uses an HMAC in place of the signature.

10.3 Binding Latency

We evaluate the time cost by a member to bind to a leader,
and its composition. Binding latency is the time from the
member’s sending the first message (NM) till both the mem-
ber and the leader finish computing the shared secret using
ECDH algorithm. The overall latency is 14.8 seconds.

Fig. 9 (c) and (d) show the time cost of every time-con-
suming operations (either ECDSA or ECDH operations) in
binding stage: 6 operations (m1 to m6) are performed by a
member object, and 7 operations (l1 to l7) by a leader. Details
can be found in Section 7. Again, we see that a leader opera-
tion costs at most 23.8 ms, while a member operation con-
sumes at least 2.6 seconds and up to 3.2 seconds.

The overall binding latencymainly consists of: i) time cost
of 5 public-key operations on the member Tm; ii) time cost of
2 public-key operations on the leader Tl; iii) transmission
time of the three messages (95.6 ms). Tm ¼

P6
i¼2 tðmiÞ ¼

14,670:3ms; Tl ¼
P2

i¼1 tðliÞ ¼ 30:5ms. Note thatm1 does not
contribute to the binding latency because the member can
perform it in advance, and save the generated ECDH public
parameter for later binding use. This reduces the binding
time by 2.6 seconds at the expense of 56 B storage. Also, l3 to
l7 (together costing 99.1 ms) do not contribute to the binding
latency either because they are performed concurrently with
m6 (costing 2.6 seconds). Since m6 is slow, it is completed
much later than l7, and it determines when the binding pro-
cess is finished. We see that 99 percent of the binding latency
comes from the member’s public-key operations due to its
constrained computing resource.

Such binding latency (14.8 seconds) is acceptable, since
session keys and binding notifications are updated infre-
quently (usually once or a few times a day). Also, it is not
performed on demand of subjects’ commands, thus there is
no stringent requirement of fast completion.

10.4 Command Execution Latency

We test the time difference from a CMD’s issuing to its
RES’s returning and verification completion, for ID-based
CMDs (Student Case, a single target) and attribute-based
CMDs (Administrator Case, bulk operation). The experi-
ments show that Heracles achieves responsive execution: a
bulk operation CMD takes 0.57 second to control 18 objects
which are scattered 1–9 hops away from a subject; mostly a
target is nearby, i.e. 1 or 2 hops away, and execution of
an ID-/attribute-based CMD on such an object costs only
0.07 second (1 hop) or 0.13 second (2 hops).

We deploy 18 leader objects and test two network topolo-
gies. In the first network, objects are 1–9 hops away from the
subject device, with 2 objects at each hop (i.e., Object 1, 2 are
1-hop away, Object 3, 4 are 2-hop away, and so on). In the
second network, objects are 1–5 hops away from the subject
device: there are 4 objects at hop 1–4 respectively, and
Object 17, 18 are 5 hops away from the subject.

The latency mainly results from: i) the subject device’s
signing a CMD and verifying the target’s RES; ii) the target’s
verifying the CMD and signing an RES; iii) messages’ trans-
mission time which depends on background traffic intensity
and can vary with environments and time. Besides, en-route
check can be optionally enabled to make intermediate nodes
between the subject device and the target object verify
CMDs and RESs before forwarding them. This is a useful
feature in help alleviate DoS attacks which keep flooding
fake messages in the network (Section 8).

10.4.1 Subject-to-Leader Commands

As shown in Fig. 9 (e), in the 9-hop network, a bulk operation
CMD has short latency no matter en-route check is enabled or
not: when en-route check is on, it takes 575.6 ms to operate 18
objects; when it is off, it takes 342.4 ms. The former costs
slightly longer because each intermediate node in the routing
path verifies the signature of CMDs going towards the targets
and the returning RESs before forwarding them. According to
research onusability engineering [17], if response time is below
1 second, the user’s flow of thought will stay uninterrupted.
Thus our bulk operation achieves good responsiveness.

Fig. 9 (f) presents the impact of hop counts on latency: the
ladder-shaped curves show that command execution on
objects at the same hop cost similar time, and the time
increases fairly linearly with hop counts. In the vast majority
of cases, IoT users are controlling nearby objects which are 1
or 2 hops away: bulk operation execution on a 1-hop object
needs only 70.3 ms no matter en-route check is on or off,
because there is no forwarding node between the subject and
1-hop targets thus no en-route check performed; execution
on a 2-hop object costs 130.6 ms when en-route check is on,
and 98.5 ms when it is off. Such short latency has the user
feel that the operation is completed instantaneously [17].
Controlling an object which is 9 hops away needs 561.7/
312.4mswhen en-route check is on/off.

The 5-hop network test (Fig. 9 (g) (h)) shows similar
trends. Both cases have responsive execution and cost
shorter time than 9-hop: it costs 337.5 ms to finish bulk oper-
ations on 18 objects with en-route check, and 252.3 ms with-
out en-route check. Execution on objects which are 5 hops
away cost 331.8/246.4 ms when check is on/off.

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2711

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

Besides, for a target of the same hop count, an ID-based
CMD for Student Case costs similar time as an attribute-
based CMD for Administrator Case due to their similar
message length (Fig. 9 (a)). So its figures are omitted here.

By comparing the results of this new testbed (18 objects,
up to 9 hops) with those of our old one (5 objects, up to 3
hops) in [18], we observe a similar trend that the time cost
increases linearly with hop count which is within 9. We do
not explore the case of operating objects at larger hops
because we believe it is rare, and we suggest in that case
infrastructures should participate in such that hop-by-hop
routing does not need to go beyond 9 hops. More discussion
can be found in Section 12.

10.4.2 Subject-to-Member Commands

Strategy 1: Indirect Subject-to-Member Commands. A target
may also be a member object. In this strategy it is associated
with a leader beforehand: the leader verifies/signs the sig-
natures of CMDs/RESs from/to the subject on behalf of the
member, while the leader-member CMDs/RESs are secured
using HMACs. The latency between a leader’s issuing a
CMD with HMAC to its member and the leader’s receiving,
verifying the returning RES is 46.2 ms. In detail, 1.4 ms is
cost by the leader in generating HMAC for CMD and verify-
ing HMAC of RES from the member; 17.7 ms is cost by the
member in verifying HMAC of CMD from the leader and
generating HMAC for RES. Message transmission costs 27
ms, about 59 percent of the overall latency.

Let’s define an i-hop member object as a member whose
leader is i-hop away from the subject (1 � i � 9), then the
overall latency of operating it is always 46.2 ms larger than
operating its leader. Recall that in Heracles, leader objects
form the “backbone” for message forwarding and member
objects are “leaves”. Thus, a command targeting an i-hop
member is realized with one targeting an i-hop leader
object, followed by a 1-hop leader-to-member command
which costs 46.2 ms. Fig. 9 (e) to (h) show that in the most
time consuming case (i.e., control a member object when en-
route check is enabled), it costs 621.8 ms to operate 18
objects in the 9-hop network, and 383.7 ms in the 5-hop net-
work. Good enough responsiveness is still achieved.

Strategy 2: Direct Subject-to-Member Commands. If a mem-
ber interacts directly with a subject device via CMDs/RESs
secured by signatures, it does not need a leader. However,
the execution latency would be significantly prolonged due
to a member’s poor computing performance. According to
our experiments, a member needs 3.2 seconds to verify the
signature in a subject CMD, and 2.8 seconds to sign the RES
it generates. Thus, even operating a single 1-hop member
object costs at least 6.0 seconds, about 10x as long as control-
ling 18 leader objects spread in 9 hops using Strategy 1, let
alone operating many multi-hop member targets. This strat-
egy not only causes unacceptably long delay to users, but
also quickly drains the energy of member objects most of
which are battery-powered.

There is a symmetric-key alternative way for subject-
member end-to-end protection: a member establishes a sym-
metric key with every subject it needs to interact with, and
they use HMACs in their CMDs/RESs. In this way the mem-
ber also does not need a leader, and has short execution
latency at the same time. However, compared with Strategy

1 in which a member needs to establish a key with only its
leader, this strategy has expensive key establishment and
maintenance overhead, and is not fit for enterprise scales.
Besides, en-route check is unavailable unless all the forward-
ing nodes also share the symmetric key.

11 RELATED WORK

ACL and capability are two common forms of access con-
trol [12], and their differences in computer systems are ana-
lyzed in [19]. Access control policies include discretionary,
mandatory, and role based access control. Attribute based
access on encrypted data in cloud [20] is explored using
attribute based encryption [21]. Our system adopts capabil-
ity based access control for its efficient updating.

Existing smart home products have mostly all-or-nothing
access control [2], [3], [22] that family members can access
everything and outsiders nothing. Recent work provides
access control based on subject-object pairs using hierarchi-
cal data names [23], or extensions on time by abstracting
smart objects as peripherals to a computer [24]. They are
intended for traditional computer systems/cloud, targeting
small scale homes, or providing coarse grained and basic
ACL based access control. Our system achieves fine grained
access control, which is necessary for enterprise environ-
ments where users and devices are both heterogeneous.

Many approaches [3], [4], [5] use centralized execution
strategies for secure access, and all access must go through
the cloud for enforcing authorization policies. They have
weak availability: a machine/network failure results in total
loss of access. This causes much more serious impact in
enterprise environments than homes due to the former’s
huge subject/object amountsproperty (Section 2). Kerberos [25],
which has been widely adopted by industry, realizes distrib-
uted authentication by granting parties tickets that prove
their identities. It does not deal with access rights. We have
tickets carry the requested authorizations, thus when the
backend is unavailable, a subject can continue operating
objects till the tickets expire (e.g., a few hours), hopefully by
then the network/server failure has been resolved. Only the
ticket request operation involves back-and-forth communi-
cation to the backend. Subsequent commands are sent
directly to objects, which greatly improves responsiveness.

There are a few capability based IoT access control
designs [26], [27], [28], but they lack deep justification prov-
ing capability’s advantage over ACL at enterprise scale. We
are the first one to perform quantitative analysis and com-
parison on ACL based systems and capability based sys-
tems under enterprise IoT contexts, and we prove that a
capability based strategy significantly reduces the overall
updating overhead and results in higher system scalability
and stronger security. Also, those designs are ID-based
while our system additionally supports attribute capability-
based access control which achieves efficient bulk operation
and smaller requesting overhead. E.g., to access a newly
installed light, if ID-based, the subject has to request a new
ticket that covers the light’s ID; however, if she holds an
attribute-based TKT specifying her rights of “operating
lights”, she does not need to request another ticket. Besides,
none of the existing work offers complete design, imple-
mentation and evaluation as we do.

2712 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

12 DISCUSSION

Impact of Leader Update on Binding. When a leader object
leaves, its members should get new leaders. As mentioned
in Section 7, a member object can establish symmetric keys
with multiple leaders beforehand, but is bound to one at a
time. When the current leader fails, it can quickly switch to
another which it shares a key with, without performing the
slow key establishment process. Besides, we may limit the
number of members that one leader can accept, and spread
binding load more evenly among leader objects, restricting
the binding updating overhead upon a leader’s leaving.

Bulk Operation.We use a testbed of 18 objects, up to 9 hops
to evaluate bulk operation. First, considering that main-
stream radios (e.g.,WiFi, Bluetooth, ZigBee) have reasonably
far transmission distances (e.g., dozens of meters) while IoT
commandsmostly target objects around the user, e.g., within
her building, 9 hops are more than enough. When com-
mands occasionally do need to go further, hop-by-hop rout-
ing might be slow or fragile; in that case they can be sent via
infrastructures (e.g., access points, cables) to the destinations
or their vicinity, and then propagated among peers. In this
way, hop-by-hop routing does not need to go beyond 9 hops.
Second, in reality, there can be more objects at each hop,
using broadcast can make them receive commands quickly
regardless of the number of objects. Thus, we believe our
evaluation is reasonable.

Bulk Operation Command Routing. A bulk operation CMD
is usually propagated with a scope control mechanism to
avoid blind flooding. One solution is to use filters based on
object locations. E.g., a CMD with predicate ftype ¼ lamp^
floor ¼ 2g targets the objects on the second floor only, and an
object should not forward it to objects out of the scope (e.g.,
Floor 1, 3). It is easy to realize if an object maintains the loca-
tion information of its neighbors (e.g., location based names
in data-centric networks [8]).

Confidentiality. Our design protects authenticity, integrity
and freshness but does not ensure TKT/CMD content confi-
dentiality. The content is not encrypted, thus adversaries
may find out one’s access rights, intended operations, which
could be sensitive. Given that each subject/object has a pub-
lic-private key pair, establishing symmetric keys to encrypt
conversations is feasible. We leave the complete solution as
future work.

Service Discovery. In the current system, subjects see the
same profiles (PROF) of an object even though they have
very different access rights to the object. If a PROF contains
sensitive information (e.g., functions for VIPs’ exclusive
use), it should not be disclosed to subjects without appropri-
ate levels. In the future we will make PROFs customized
such that subjects discover different versions for the same
object and gain only the knowledge allowed.

Physical Contact Attacks. An attacker may gain physical
contact with objects, and launch attacks such as rebooting
the target to purge its records of IDCMDs and replay CMDs
whose timestamps are still within time synchronization
error e. To address this problem, we may require any object
not to accept CMDs upon power up until e time later. Then
the replayed CMDs will be rejected for their obsolete time-
stamps. A full solution to physical contact based attacks
goes beyond the scope of this paper.

En-Route Check. Leader objects can conduct en-route
check to alleviate denial-of-service attacks that flood large
numbers of fake messages in the network. Under normal
conditions when attacks do not happen, en-route check can
be disabled to save computation, energy and time. If a target
leader detects attacks, it may broadcast an alert message
notifying other leader objects in vicinity to switch on en-
route check, and with possible hints on what to check (e.g.,
TKT integrity, CMD freshness).

13 CONCLUSION

In this paper, we describe the design, implementation and
evaluation of Heracles, which achieves fine-grained access
control, efficient updating, and responsive command execu-
tion for enterprise scale IoT. Heracles uses secure, unforge-
able tokens to describe the authorizations granted to a
subject, which are used to access objects robustly and
quickly, without involving the cloud. Besides, it supports
responsive operations on resource-constrained objects and
efficient bulk operations. Our analysis and performance
evaluation show that it is secure, and has scalable updating
(eliminates or reduces by 10x–100x the updating overhead
in many situations), and responsive execution (0.07 s to
access a 1-hop object; 0.57 s to access 18 multi-hop objects).

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under grants CCF 1652276, CNS 1513719, and
CNS 1730291.

REFERENCES

[1] J. Greenough and J. Camhi, “The Internet of Things: Examining
how the IoT will affect the world,” Business Intell. Rep., 2015.

[2] B. Ur, J. Jung, and S. Schechter, “The current state of access control
for smart devices in homes,” in Proc. Workshop Home Usable
Privacy Secur., 2013, vol. 29, pp. 209–218.

[3] SmartThings, “SmartThings classic developer documentation,”
Accessed: Jul. 1, 2017. [Online]. Available:https://buildmedia.
readthedocs.org/media/pdf/smartthings/ latest/smartthings.pdf

[4] Amazon, “AWS IoT developer guide,” 2015. [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.
pdf

[5] IBM, “Meet Watson: The platform for cognitive business,” 2016.
[Online]. Available:http://www.ibm.com/watson/.

[6] C. Perkins, E. Belding-Royer, and S. Das, “RFC3561: Ad hoc on-
demand distance vector (AODV) routing,” RFC editor, 2003.

[7] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and
L. Wang, “NLSR: named-data link state routing protocol,” in Proc.
3rd ACM SIGCOMMWorkshop Inf.-Centric Netw., 2013, pp. 15–20.

[8] X. Song, Y. Huang, Q. Zhou, F. Ye, Y. Yang, and X. Li, “Content
centric peer data sharing in pervasive edge computing environ-
ments,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst., 2017,
pp. 287–297.

[9] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair caching algo-
rithms for peer data sharing in pervasive edge computing envi-
ronments,” in Proc. IEEE 37th Int. Conf. Distrib. Comput. Syst.,
2017, pp. 605–614.

[10] S. Blake-Wilson, B. Moeller, V. Gupta, C. Hawk, and N. Bolyard,
“Elliptic curve cryptography (ECC) cipher suites for transport
layer security (TLS),” RFC 4492, May, 2006.

[11] H. Krawczyk and P. Eronen, “HMAC-based extract-and-expand
key derivation function (HKDF),” RFC 5869, May, 2010.

[12] R. S. Sandhu and P. Samarati, “Access control: Principle and
practice,” IEEE Commun. Mag, vol. 32, no. 9, pp. 40–48, Sep. 1994.

[13] Oracle, “JavaCryptographyArchitectureReferenceGuide,”Accessed:
Jul. 1, 2017. [Online]. Available: https://docs.oracle.com/javase/7/
docs/technotes/guides/ security/crypto/CryptoSpec.html

ZHOU ET AL.: TOWARDS FINE-GRAINED ACCESS CONTROL IN ENTERPRISE-SCALE INTERNET-OF-THINGS 2713

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

https://buildmedia.readthedocs.org/media/pdf/smartthings/ latest/smartthings.pdf
https://buildmedia.readthedocs.org/media/pdf/smartthings/ latest/smartthings.pdf
https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
https://docs.aws.amazon.com/iot/latest/developerguide/iot-dg.pdf
http://www.ibm.com/watson/.
https://docs.oracle.com/javase/7/docs/technotes/guides/ security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/7/docs/technotes/guides/ security/crypto/CryptoSpec.html

[14] Kenneth MacKay, “micro-ecc,” Accessed: Jun. 19, 2017. [Online].
Available:https://github.com/kmackay/ micro-ecc

[15] M. Qu, “SEC 2: Recommended elliptic curve domain parameters,”
Certicom Res., Mississauga, ON, Canada, Tech. Rep. SEC2-Ver-0.6,
1999.

[16] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proc. Annu. Int. Cryptol. Conf.,
1996, pp. 1–15.

[17] J. Nielsen, Usability Engineering. Amsterdam, The Netherlands:
Elsevier, 1994.

[18] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Heracles: Scalable, fine-
grained access control for internet-of-things in enterprise environ-
ments,” in Proc. IEEE Conf. Comput. Commun., 2018, pp. 1772–1780.

[19] M. S. Miller et al., “Capability myths demolished,” Technical
Report SRL2003–02, Johns Hopkins University Systems Research
Laboratory, 2003. [Online]. Available:http://www. erights. org/
elib/capability/duals, Tech. Rep., 2003.

[20] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable,
and fine-grained data access control in cloud computing,” in Proc.
IEEE Infocom, 2010, pp. 1–9.

[21] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,” in
Proc. 13th ACM Conf. Comput. Commun. Secur., 2006, pp. 89–98.

[22] Apple, “Homekit,” Accessed: Jul. 1, 2017. [Online]. Available:
https://developer.apple.com/homekit/

[23] W. Shang, Q. Ding, A. Marianantoni, J. Burke, and L. Zhang,
“Securing building management systems using named data
networking,” IEEE Netw., vol. 28, no. 3, pp. 50–56, May/Jun. 2014.

[24] C. Dixon et al., “An operating system for the home,” in Proc. 9th
USENIX Symp. Netw. Syst. Des. Implementation, 2012, pp. 337–352.

[25] B. C. Neuman and T. Ts’o, “Kerberos: An authentication service
for computer networks,” IEEE Commun. Mag., vol. 32, no. 9,
pp. 33–38, Sep. 1994.

[26] J. L. Hern�andez-Ramos, A. J. Jara, L. Marin, and A. F. Skarmeta,
“Distributed capability-based access control for the internet of
things,” J. Internet Serv. Inf. Secur., vol. 3, no. 3/4, pp. 1–16, 2013.

[27] P. N. Mahalle, B. Anggorojati, N. R. Prasad, and R. Prasad,
“Identity authentication and capability based access control
(iacac) for the Internet of Things,” J. Cyber Secur. Mobility, vol. 1,
no. 4, pp. 309–348, 2013.

[28] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based
security approach to manage access control in the internet of
things,” Math. Comput. Modelling, vol. 58, no. 5, pp. 1189–1205,
2013.

Qian Zhou received the BE degree from Beihang
University (previously known as Beijing University
of Aeronautics and Astronautics). Currently, he is
working toward the PhD degree in the ECE Depart-
ment, Stony Brook University. His main research
interests include enterprise-scale Internet of Things
(or cyber-physical systems), particularly in security
and privacy, and networking aspects.

Mohammed Elbadry received the BS and MS
degrees from Stony Brook University. Currently, he
is working toward the PhD degree in the ECE
Department, Stony Brook University. His research
interests include wireless networking and sensing,
and IoT security.

Fan Ye received the BE and MS degrees from
Tsinghua University, and the PhD degree from
the Computer Science Department, UCLA. He is
currently an associate professor with the ECE
Department, Stony Brook University. He has pub-
lished more than 90 peer reviewed papers that
have received more than 12,000 citations accord-
ing to Google Scholar. His research interests
include mobile sensing systems, with applications
in location based services and healthcare, Internet-
of-Things, andwireless and sensor networks.

Yuanyuan Yang (Fellow, IEEE) received the
BEng and MS degrees in computer science and
engineering from Tsinghua University, Beijing,
China, and the MSE and PhD degrees in com-
puter science from Johns Hopkins University,
Baltimore, Maryland. She is currently a SUNY
distinguished professor with the Department of
Electrical and Computer Engineering and the
Department of Computer Science at Stony Brook
University, New York, which she joined, in 1999.
She has been on leave since 2018 serving as a

program director in the National Science Foundation’s Directorate of
Computer and Information Science and Engineering (CISE). Her
research interests include parallel/distributed computing, cloud comput-
ing, edge computing, and mobile computing. She has published more
than 440 scientific papers in leading refereed journals and conferences.
She is also an inventor/co-inventor of seven US patents in the area of
interconnection networks. She is currently the editor-in-chief for IEEE
Transactions on Cloud Computing. She served as the associate editor-
in-chief for IEEE Transactions on Cloud Computing from 2016-2019,
and the associate editor-in-chief for IEEE Transactions on Computers
from 2013-2014. She is currently an associate editor for ACM Comput-
ing Surveys and an associate editor for IEEE Transactions on Parallel
and Distributed Systems. She served as an associated editor for IEEE
Transactions on Computers from 2006-2012, IEEE Transactions on
Parallel and Distributed Systems from 2001-2005 and Journal of Parallel
and Distributed Computing from 2003-2017.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2714 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 8, AUGUST 2021

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:44:28 UTC from IEEE Xplore. Restrictions apply.

https://github.com/kmackay/ micro-ecc
http://www. erights. org/elib/capability/duals
http://www. erights. org/elib/capability/duals
https://developer.apple.com/homekit/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

