
GraphiteRouting: Name-based Hierarchical Routing
for Internet-of-Things in Enterprise Environments

Qian Zhou and Fan Ye
Department of Electrical and Computer Engineering, Stony Brook University

Email: {qian.zhou, fan.ye}@stonybrook.edu

Abstract—Internet of Things in enterprise environments fea-
tures large numbers of devices deployed in rooms, floors of
possibly multiple buildings. Delivering user commands to control
devices nearby and multiple hops away requires efficient and
scalable routing in such environments. Existing work in ad-hoc,
sensor or IoT network routing lacks good human accessibility
and scalability. In this paper, we propose a peer-based protocol
GraphiteRouting. All devices carry human-readable hierarchical
string names for easy reference. It leverages devices’ installation
hierarchy for scalable hierarchical routing: most devices maintain
only a few to dozens of routing entries for same-room devices,
and a fraction of devices act as gateways for traffic from/to other
rooms, floors or buildings. Also, it leverages users’ operation
patterns to less optimize infrequently used routes. Extensive
analysis and performance evaluation on a 20-node testbed prove
that GraphiteRouting is scalable: it has routing tables 10x–1000x
smaller than those in peer-based flat routing; also, upon device
joining/leaving, its routing entries converge in less than 5 s, and
forwarding a user command over 8 hops costs less than 0.3 s.

Index Terms—Peer-based Routing, Name-based Routing, Hi-
erarchical Routing, Internet of Things

I. INTRODUCTION

Internet of Things in enterprise environments features more

than thousands of devices distributed in rooms, floors and

possibly multiple buildings. A user issues a command to

operate devices close by or multiple hops away, e.g., close/turn

off all the “Things” (doors, windows, lights, etc.) in her office

when leaving, or turn on the lights in the next aisle.

Routing is critical in correctly and efficiently delivering a

command to the destination device. There is intensive routing

work for the Internet, wireless sensor networks, mobile ad-hoc

networks [1], [2], [3], and for IoT which focuses on energy

efficiency [4], throughput [5], security [6], etc. However,

a solution specifically devised for enterprise IoT deserves

further effort, due to the context’s unique characteristics.

First, though some IoT devices may be more resource-

rich, a lot of constrained devices may not have direct Internet

connectivity and they rely on peer-based routing to relay

messages to/from users. Second, different from traditional ad-

hoc networks that use numeric addresses to denote nodes,

IoT features frequent human operations. Thus facilitating easy

human access to discover, reference and control devices in

manners convenient to humans is critical. Third, traditional

ad-hoc network routing assumes “flat” traffic where any node

may need to communicate with any other, but in IoT traffic

is largely correlated with building structures. E.g., a user is

mostly interacting with the devices installed in her room or

floor. If routing paths are blindly established between all pairs

of devices, it would incur prohibitive amounts of overhead,

whereas most of which would be made in vain.

In this paper, we propose GraphiteRouting, a peer-based,

name-based, hierarchical routing protocol leveraging IoT de-

vices’ installation hierarchy and users’ operation patterns to

achieve scalability. Each IoT device has a hierarchical name

reflecting its building/floor/room of installation. Such names

are easy for users to discover, remember, reference and access.

By advertising names to neighboring devices, a fraction of

devices find out their abilities to serve as room/floor/building

gateways and they maintain routing entries for traffic across

rooms/floors/buildings. And most devices are non-gateways

which only maintain a few to dozens of routing entries for

traffic within their rooms. A user command is hierarchically

routed to the destination building first, then destination floor,

room, and finally device. Besides, based on users’ operation

patterns, we use an intra-floor strict while inter-floor loose
strategy that routing for traffic within a room or floor (which

is frequent) is strongly optimized while that across floors or

buildings (infrequent) is weakly optimized, to further reduce

routing establishment overhead. It is named after graphite

whose atoms have strong intra-layer forces while weak inter-

layer forces. Our contributions are:

• We devise a hierarchical naming rule for IoT devices

to facilitate easy human discovery, reference and access,

without requiring a separate mechanism mapping human

specifications to device numeric identifiers.

• We design a strategy for devices to dynamically establish

a self-organized, hierarchical network based on their

names. It leverages IoT devices’ installation hierarchy to

achieve hierarchical routing scalable to enterprise IoT.

• We strongly optimize frequent intra-room and inter-room

routing, but not inter-floor or inter-building routing which

occurs much more rarely. It reduces routing establishment

overhead and further improves scalability.

• We implement our designs and conduct analysis and real

experiments on a 20-node testbed. Using GraphiteRout-

ing, one device needs at most dozens of routing entries

regardless of the number or size of buildings. On the

contrary, peer-based flat routing needs 10x∼1000x more

entries. Besides, our solution has quick network conver-

gence (< 5 s when a device joins/leaves the network) and

fast command forwarding (< 0.3 s over 8-hop delivery).

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

II. MODELS AND ASSUMPTIONS

Node Types. Besides a backend server, two types of nodes

are considered: subject devices and objects. A subject is a

user who uses a subject device (e.g., smartphone) to access

objects [7], [8], [9], i.e., IoT devices or “Things”.

We argue that sufficient wall-powered objects (e.g., door

locks, lights, HVAC) exist in enterprise environments. They

have less concern about energy, and serve as routers. Battery-

powered objects (e.g., temperature/smoke sensors) are hosts of

routers and not involved in routing. In the remainder, objects

refer to wall-powered ones unless otherwise specified.

Network Connectivity. We assume network connectivity

exists among subject devices and objects in close proximity.

This could be enabled by certain radio modes (e.g., WiFi ad-

hoc, WiFi direct), and/or bridging devices that have multiple,

possibly heterogeneous radios to relay messages. Objects are

largely static once installed, but occasional, small-scale object

additions/removals make the network topology low dynamic.

A. Properties of Internet-of-Things

1) Human operations are frequent. Human users cannot

easily track numeric identifiers of objects. Instead, they are

used to specifying an object to access with its installation

location and device type, e.g., “living room, ceiling light”.

2) Numerous objects are distributed in a building
hierarchy. In a home environment there are usually dozens

to hundreds of objects scattered in multiple rooms or a few

floors; an enterprise can have up to tens of thousands of

objects deployed in possibly multiple buildings, with many

more floors per building and many more rooms per floor.

3) Command amounts vary inversely with target dis-
tances. Unlike Internet users who frequently perform remote

access (e.g., stream movies from distant servers), IoT subjects

are mostly interacting with nearby objects. i) Usually a subject

is controlling those (e.g., lights, windows, air conditioner)

in her current room. ii) Commands traveling across several

rooms on the floor or across several floors, are less frequent

but still common. E.g., before a manager leaves his office

for conference room on the floor, he sends a command to

boot the conference room computer/projector, such that when

he arrives the equipment is ready; seeing from the 2nd floor

that a visitor arrives, the secretary unlocks the building gate.

iii) Remote commands crossing many floors or even targeting

another building only happen occasionally.

III. DESIGN GOALS

Scalability. Routing table sizes and routing updating over-

head (in terms of convergence time and message overhead)

should be small enough such that the routing solution applies

to large-scale IoT in enterprise environments.

Human Accessibility. Objects should be easily referenced,

accessed by humans, without requiring a separate mechanism

mapping human specifications to object numeric identifiers.

Self-Organization. The network should be self-organized,

and dynamically updated upon object joining/leaving.

Non-Goals. We focus on IoT routing in enterprise environ-

ments, where objects are mostly installed indoor and human

users send commands of small sizes to them. It is different

from work [4], [10], [11] dealing with IoT of a wireless sensor

network style where objects deployed outdoor with possibly

constrained energy send large volumes of sensing data to

gateways. Also, our work is peer-based, for robust and efficient

routing in relative near ranges (e.g., < 10 hops). It is not for

replacing infrastructure-based, long-distance routing.

IV. ROUTING ALGORITHM

Our routing algorithm is based on link-state (LS) routing.

We choose LS other than distance-vector (DV) because it

does not have the latter’s count-to-infinity or slow convergence

issues. However, LS originally may have too high message

overhead to fit for an enterprise scale. Our design is name-

based for good human accessibility, and it leverages IoT

objects’ installation hierarchy and subjects’ operation patterns

to achieve hierarchical routing scalable to enterprise IoT.

Bootstrapping. To join the system, a new subject or ob-

ject must first register at the backend, getting its ID. An

object additionally gets a hierarchical, human-readable string

name according to its installation location and device type,

with the format: Namespace/Building/Floor/Room/Type, e.g.,

SBU/EngBuilding/Floor1/Room217/Light1. The last segment

can be any alias (e.g., “LightAboveWhiteBoard”) as long as

it is unique in that room. An object should get a new name

from the backend if moved to another room/floor/building.

Roles. Each object has variable roles—a set tracking its

role(s) in routing, which has one or more of the items below:

• Internal object. Each object has this role upon birth and

will always do. It may gain one or more other roles.

• Room-gateway router object. A room-gateway routes

commands from one room to another on the same floor.

• Floor-gateway router object. A floor-gateway routes

commands from one floor to another in the building.

• Building-gateway router object. A building-gateway

routes commands from one building to another.

Other Variables. Each object has neighbors recording its

1-hop neighboring objects, and roomMates recording other

objects in its room. roomMates constitute graph roomGraph
and the routes to them are stored in roomRoutingTable. If it

is a room-gateway, it additionally has floorMates recording

other room-gateways on its floor. floorMates constitute

floorGraph and the routes are in floorRoutingTable. extra
records objects in other floors or buildings.

Overview. Establishing routing has three steps: i) each ob-

ject discovers neighbors and its own role; ii) each object runs

LS algorithm to compute optimal paths to its roomMates;

iii) each room-gateway runs LS algorithm to compute optimal

paths to its floorMates. Most objects are non-gateways and

do not perform the 3rd step. This reduces routing table sizes,

updating overhead, and makes good scalability.

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A topology example of 20 objects deployed in two buildings, where a solid or dashed line denotes a wireless link.

It is also the topology used by our testbed. Some objects are pure internal objects and have small routing tables; others are

additionally room-/floor-/building-gateways and have slightly larger tables.

A. Neighbor and Role Updating

An object O periodically broadcasts HELLO messages for

1 hop (Algorithm 1: line 1–4). The message carries message

type, sender ID, name, address (e.g., IP). t is a timestamp of

message generation for ensuring that the latest information is

used for routing updating; n is a nonce for duplicate detection.

Algorithm 1 Routing algorithm: neighbor and role updating

1: procedure SEND HELLO

2: type ← ‘HELLO’

3: broadcast HELLO: 〈type,O,O.name,O.addr, t, n〉
4: end procedure

5: procedure PROCESS HELLO(O′, name′, addr′)
6: relation ← relation(name′, O.name)
7: role ← relationToRole(relation)
8: add role to O.roles
9: add (O′, name′, addr′) to O.neighbors

10: end procedure

When receiving a HELLO from O′ (line 5–10), O com-

pares its own name with O′’s to get the maximum pre-

fix length, and based on Tab. I it gets their location rela-

tionship and its role. E.g., in Fig. 1, Object 4 has name

“SBU/BuildingX/Floor1/RoomB/Lamp”; it hears Object 2’s

name “SBU/BuildingX/Floor1/RoomA/Lamp”, and finds 3

matching prefixes, which means they are on the same floor but

different rooms. Then, a role is inferred from the relationship:

since Object 4 hears an object in the next room, it finds its

ability to serve as a bridge for traffic across the two rooms, i.e.,

it is a room-gateway. O’s roles and neighbors are updated.

B. Intra-Room Routing Updating

Now O has knowledge about its neighbors, it periodically

generates its intra-room link state packets (ROOM LSP) and

propagates them within the room. The message carries O’s link

states to intra-room neighbors (Algorithm 2: line 4–7). E.g.,

TABLE I: Each maximum prefix length corresponds to a

location relationship and a routing role.

Length Location Relationship Role

4 intra-room: O′ and O in the same room internal object
3 inter-room: different rooms, same floor room-gateway
2 inter-floor: different floors, same building floor-gateway
1 inter-bldg: in different buildings bldg-gateway

Object 4’s ROOM LSP contains link 4-7. We do not enforce

a metric for link cost, which can be hop count, expected trans-

mission count [12], etc. extra stores the information of inter-

floor or inter-building neighbors (line 8–9), and will be used

later in inter-floor or inter-building routing (Section IV-D).

Algorithm 2 Routing algorithm: intra-room routing updating

1: procedure SEND ROOM LSP

2: type ← ‘ROOM LSP’

3: links ← ∅, extra ← ∅

4: for all Oi ∈ O.neighbors do
5: relation ← relation(Oi.name,O.name)
6: if relation = ‘intra-room’ then
7: add (O,Oi, costi) to links
8: else if relation=‘inter-floor’ or ‘inter-bldg’ then
9: add Oi.name to extra

10: end if
11: end for
12: propagate ROOM LSP: 〈type,O,O.name,O.roles,

links, extra, t, n〉 within the room

13: end procedure

14: procedure PROCESS ROOM LSP(O′, name′, roles′,
links′, extra′)

15: add(O′,name′,roles′,cost′,extra′) to O.roomMates
16: add links′ to O.roomGraph, and update

O.roomRoutingTable using Dijkstra’s algorithm

17: end procedure

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

When receiving a ROOM LSP from O′ (line 14–17),

O adds O′’s information to its roomMates, and updates

roomGraph and roomRoutingTable. So far, it can route

messages to other objects in its room along optimal paths.

C. Inter-Room Routing Updating

In this paper “inter-room” means across different rooms

on the same floor. If O is a room-gateway, it periodically

generates inter-room link state packets (FLOOR LSP) which

have a similar format as a ROOM LSP, and propagates them

within the floor. Unlike a ROOM LSP, the message carries

O’s link states to inter-room neighbors and intra-room room-
gateways. E.g., Object 4’s FLOOR LSP contains link 4-2 and

4-6. extra in a FLOOR LSP is a union of all the extras of its

roomMates, for inter-floor/building routing (Section IV-D).

If O is a room-gateway, when receiving a FLOOR LSP

from O′, it adds O′’s information to its floorMates, and

updates floorGraph and floorRoutingTable. So far, it can

route messages to room-gateways in other rooms of its floor

along optimal paths, while a pure internal object cannot.

Object 4’s two routing tables are shown in Tab. II.

TABLE II: Object 4: roomRoutingTable (left) &

floorRoutingTable (right)

Destination Next Hop

5 7
6 7
7 7

Destination Next Stop

2 2
6 6
8 6

D. Loose Inter-Floor/Building Routing

Unlike intra-room and inter-room routing, inter-floor and

inter-building need no shortest paths maintained proactively.

This is what we call “intra-floor strict while inter-floor loose”.

Inter-Floor Routing. Inter-floor routing is different from

the other three: floors are always named after regular numbers,

while objects, rooms, buildings not necessarily. We use such

numbers to devise a simple but effective routing strategy and a

shortest path algorithm is not needed: to deliver a packet to the

destination on Floor y, O on Floor x just checks if it or any

of its roommates has a neighbor ON on Floor x′ (by checking

roommates’ extra fields) such that |y − x′| < |y − x|; if yes,

the packet is sent to ON to vertically approach the destination;

if no, O sends the packet to another room on the floor (via

room-gateways) where the objects know such a neighbor ON ,

and then vertical approach is performed.

Inter-Building Routing. If the destination is in a different

building, O just checks if it or any of its roommates has a

neighbor ON in the target building, and forwards the packet to

ON if yes. Otherwise it sends the packet to another room of the

floor/building (via room-/floor-gateways) for further search.

This suffices routing to neighboring buildings.

Arguments. We use such loosely optimized strategies be-

cause: First, as mentioned in Section II-A, commands that

need to reach a different building or cross many floors are

rare, and always maintaining optimal routing paths for them

would incur prohibitive amounts of overhead, whereas most of

which would be made in vain. Instead, our strategies do not

guarantee shortest paths, but they achieve effective inter-floor

or building routing without needing extra link state exchange.
Second, occasionally commands need to travel far (e.g., to

another building), and in such cases peer-based routing, even

strongly optimized, would be too slow or unreliable because of

too many hops. It is better to route the command to the target

via infrastructures (access points, cables), or to its vicinity

(e.g., the same room or floor), then our intra-room or inter-

room routing can take the task over.

E. Dynamic Updating upon Object Joining/Leaving
By sending periodic HELLOs, ROOM LSPs and

FLOOR LSPs, an object which joins the network will

be detected by other objects. Those messages are all soft-

state, so the entries of an object which leaves the network

will be expired and then removed.

V. FORWARDING ALGORITHM

A user command is hierarchically forwarded to its des-

tination via routing table lookup: it reaches the destination

building first, then destination floor, room, and finally device.

An internal object depends on itself for optimal intra-room

forwarding, and delegates to a gateway the traffic going out

of the room to another room, floor or building.
As shown in Algorithm 3 (line 2–4), when receiving a

command cmd, O extracts its destination dest. O executes

cmd if it is dest, otherwise it finds its relationship with dest
by comparing their names. Depending on the relationship, one

of the following forwarding strategies is used:
1) Intra-Room Forwarding. (line 5–8) If dest is in the

same room and exists in O’s roomMates, O simply forwards

cmd to it by roomRoutingTable lookup.
2) Inter-Room Forwarding. (line 9–13) If dest is in

another room of the floor: i) if O is a room-gateway, it has

floorRoutingTable and can forward cmd towards the room-

gateway in dest’s room; ii) otherwise O delegates cmd to a

room-gateway in its room.
3) Inter-Floor Forwarding. (line 14–20) If dest is on

another floor of the building: i) (line 15–16) O checks if it

or any of its roommates has a neighbor ON which is on a

floor closer to dest’s floor, and sends cmd to ON if yes; ii)

(line 17–18) otherwise O delegates cmd to a room-gateway

in its room, to search ON from other rooms on the floor.
4) Inter-Building Forwarding. If dest is in another build-

ing, the process is similar to inter-floor forwarding, except that

ON is a neighbor in dest’s building.
Gateway Selection. When a pure internal object needs to

use a room-gateway, it may find multiple candidates among its

roommates and which is on the optimal path to the destination

is unknown to it. We use a hot-potato routing [13] like

strategy: the object sends the message to the closest room-

gateway (e.g., with the minimum hop count). The chosen

gateway, if not on the optimal path, will forward the message

to the correct gateway. Besides, it will inform the object which

gateway to use in the future for that destination.

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 3 Forwarding algorithm

1: procedure PROCESS COMMAND(cmd)

2: dest ← cmd.destination
3: relation = relation(dest, O.name)
4: if dest = O.name then execute cmd

� intra-room forwarding

5: else if relation = ‘intra-room’ then
6: if dest ∈ O.roomMates then forward cmd to-

wards dest
7: else return ERROR

8: end if
� inter-room (but the same floor) forwarding

9: else if relation = ‘inter-room’ then
10: if O is ‘room-gateway’ and ∃ OF ∈

O.floorMates has relation(OF , dest) = ‘intra-room’

then forward cmd towards OF

11: else if ∃ OR ∈ O.roomMates is ‘room-gateway’
then forward cmd towards OR

12: else return ERROR

13: end if
� inter-floor forwarding

14: else if relation = ‘inter-floor’ then
15: if O is ‘floor-gateway’ and O has neighbor ON

approaching dest’s floor then forward cmd to ON

16: else if ∃ OR ∈ O.roomMates has neighbor ON

approaching dest’s floor then forward cmd towards OR

17: else if O is ‘room-gateway’ and ∃ OF ∈
O.floorMates and OF or OF .roomMates has neighbor

ON approaching dest’s floor then forward cmd to OF

18: else if ∃ OR ∈ O.roomMates is ‘room-gateway’
then forward cmd towards OR

19: else return ERROR

20: end if
� inter-bldg forwarding is omitted for space constraints

21: end if
22: end procedure

VI. EVALUATION

We implement our routing and forwarding algorithms, and

conduct analysis and real experiments on a tested consisting

of 20 objects, each emulated by a Raspberry Pi 3. WiFi ad-

hoc is used for communication between two nodes. As argued

in Section II, wall-powered objects with needed radios serve

as routers while resource-/power-constrained ones do not, thus

using Pis can emulate networking and power aspects well.

Since the “graphite” network mirrors the building’s con-

struction hierarchy, a node’s routing table size is about the

number of nodes in the room it is in, plus (if it is a room-

gateway) the number of rooms on the floor, which is always

a very limited number regardless of the size of the whole

building. We first theoretically analyze our room/floor routing

table sizes; then we conduct real experiments using 20 objects

deployed as Fig. 1 to test a representative case of several

rooms/floors, and each intra-room network is 1∼2 hops in

diameter. In reality there can be more objects per room,

but hop count would be limited, considering that mainstream

radios (e.g., WiFi, Bluetooth, ZigBee) have reasonably far

transmission distances (e.g., dozens of meters). So our testbed

consisting of 20 objects is regarded sufficient.

We make HELLOs/ROOM LSPs/FLOOR LSPs sent with

period Thello = 1 s, Troom = Tfloor = 2 s, and expired in

Ehello = 2 s, Eroom = Efloor = 4 s.

We find GraphiteRouting is scalable to enterprise environ-

ments: i) its routing table is small (dozens of entries) while

peer-based flat routing is 10x∼1000x; ii) it has quick network

convergence (< 5 s when a device joins/leaves the network)

and fast command forwarding (< 0.3 s over 8-hop delivery).

A. Routing Table Size

Without loss of generality, we assume x (order of magni-

tude: 100 ∼ 101, i.e. one to dozens) buildings, averagely l
(100 ∼ 101) floors per building, m (∼ 101) rooms per floor,

and n (∼ 101) objects per room. The numbers of room-/floor-

/building-gateways in each room are all denoted as k (∼ 100).

In our system the number of routing entries kept by an

object depends on its role(s): i) every object is an internal

object and has (n − 1) entries for its roommates; ii) if it

also serves as a room-gateway, it additionally needs (mk− 1)
entries for its floormates (i.e. same-floor room-gateways); iii)

if it also serves as a floor-/building gateway, it needs one or

a few entries for each of the floors/buildings it can reach in

1 hop; that number is usually a few and negligibly small. We

summarize the table sizes with small numbers omitted:

TABLE III: Routing table sizes of GraphiteRouting

Role Routing Table Size In Our Testbed

Internal object n (∼ 101) Object 3 has 3 entries
Room-gateway n+mk (∼ 101) Object 2 has 6 entries

As shown, the table of a room-gateway and that of a pure

internal object have the same magnitude (∼ 101). Both are

significantly smaller than a flat routing table, which may have

xlmn (102 ∼ 104) entries and be 10x∼1000x larger.

B. Message Overhead

Theoretically, one HELLO is broadcast (1-hop only) by each

object per Thello; n (∼ 101) ROOM LSPs are propagated

within a room per Troom; mk (∼ 101) FLOOR LSPs are

propagated within a floor per Tfloor. We regard such message

overhead acceptably small, and the amount of traffic can

be reduced if lower transmission frequencies are used (e.g.,

Thello = 10 s, Troom = 20 s) at the expense of longer

convergence time. In our implementation, HELLOs use sim-

ple broadcast. ROOM LSPs, FLOOR LSPs and CMDs have

retransmission for reliable delivery. For each of the three, the

retransmission rate found in our experiments is around 9.7%.

C. Routing Algorithm: Convergence Time

We test the convergence time (i.e. from an object’s join-

ing/leaving till the slowest affected object finishes updating its

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

routing table) of five representative objects with different roles.

They are: Object 5 (internal), 2 (room-gateway), 3 (internal),

0 (building-gateway), 1 (floor-gateway).

5 2 3 0 1
Add-Obj ID

0

1

2

3

4

5

O
ve

ra
ll

C
o

n
v

T
im

e
(s

)

5 2 3 0 1
Rmv-Obj ID

0
1
2
3
4
5
6
7

(a) Overall convergence time

5 4 6 7
Object ID

0

1

2

3

4

5

C
o

n
v

T
im

e
fo

r
A

d
d

in
g

 O
5

(s
)

4 6 7
Object ID

0
1
2
3
4
5
6
7

C
o

n
v

T
im

e
fo

r
R

m
vi

n
g

 O
5

(s
)

(b) Convergence details for Object 5

(c) Convergence details when Object 1 joins (floor-updating marked by �)

(d) Convergence details when Object 1 leaves (floor-updating marked by �)

Fig. 2: Convergence time when different objects join/leave

Fig. 2 (a) shows that all cases have fast convergence: < 5

s for addition and 6 s for removal. For addition, adding an

internal object like Object 5 is the fastest since it only affects

its roommates (details shown in (b)). A room-gateway (e.g.,

Object 2) is slower because of additional inter-room updating;

a floor- or building-gateway (e.g., Object 1 or 0) is further

slower due to updating in other floors or buildings besides

of that in this room and floor (details shown in (c)(d)). Note

that although Object 3 is a pure internal object, it has slower

convergence than 5 because it happens to be a hub connecting

Object 2 and 0, 1. Its existence makes Object 2 know the

existence of a floor-gateway (Object 1) in the room, thus its

presence/absence triggers Object 2’s floor routing updating.

On the other hand, convergence times for removal are less

different among the five objects. It is because each case needs

to wait for similar time for message expiration.

D. Forwarding Algorithm: Forwarding Time

We also evaluate the latency from a command’s departure

to arrival when using our forwarding algorithm. We test

two complicated, multi-hop (8-hop and 7-hop respectively)

forwarding cases. Case 1 is inter-building forwarding, from

Object 10 to 19. Our forwarding algorithm finds the path:

10→8→6→7→4→2→3→0→19. Case 2 is inter-floor for-

warding, from Object 0 to 18. Originally our algorithm gets:

0→1→12→15→13→18. To make it more challenging, we

cut link 13-18, and find the algorithm succeeds in finding an

alternative: 0→1→12→15→14→16→17→18. Fig. 3 presents

the results for Case 1, and Case 2 without link 13-18.

1 2 3 4 5 6 7 8
Hop Count

0

100

200

300

400

500

F
w

d
in

g
 T

im
e

(m
s)

(a) Command from Object 10 to 19

1 2 3 4 5 6 7
Hop Count

0

100

200

300

400

500

F
w

d
in

g
 T

im
e

(m
s)

(b) Command from Object 0 to 18

Fig. 3: Command forwarding latency

Both cases achieve quick forwarding, usually < 0.3 s, and

the median time costs are < 0.15 s. Note that the same hop

count in the two figures corresponds to totally different objects

which are deployed in different locations, and it is normal that

their arrival times differ.

VII. DISCUSSION

Link Cost. The link cost metric can affect directly the

routing decisions. Hop count is one option. If more dynamic

changes turn out significant, metrics accounting for them (e.g.,

expected transmission count (ETX) [12] can also be used.

Gateway Reduction. Due to objects’ high deployment

densities and radios’ long transmission distances, it is common

that many objects can hear objects in other rooms/floors, thus

are able to act as gateways. However, GraphiteRouting wants

most objects to be pure internal nodes and have small routing

tables. The number of gateways per room for reaching the

same external destination should be limited to a few, via e.g.,

gateway election, which is out of the scope.

Event-Driven Updating. Periodic updating is used in our

design and implementation for its simplicity and robustness.

An event-driven scheme that an object sends LSPs immedi-

ately when detecting a link state change, can result in faster

updating and less traffic. The two can be used in combination.

VIII. RELATED WORK

Ad-hoc Routing. DSR [1] is on-demand source routing

which needs a message to carry the whole route with it.

DSDV [2] relies on routing tables maintained by intermediate

nodes and uses sequence numbers to avoid routing loops.

Its periodic updating makes it unsuitable for highly dynamic

networks. Like DSR, AODV [3] is an on-demand routing

protocol; however, it maintains routing tables on nodes. They

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

work for “flat” traffic where any node may need to communi-

cate with any other, thus unscalable in enterprise IoT due to

their significant unnecessary overhead.

Named-data Routing. NLSR [14] is named-data link state

routing. Unlike IP-based, it propagates reachability informa-

tion denoted by name prefixes instead of IP prefixes. Our nam-

ing rule uniquely mirrors buildings’ construction hierarchy,

and realizes scalable routing in enterprise IoT.

IoT Routing. Multiple IoT routing solutions with various

goals have been proposed. In [15], [10], [4], IoT of a wireless

sensor network style is targeted, and energy efficient routing

is studied. In [11], content aggregation is performed during

routing to alleviate congestion and reduce latency; Lei et al.

[5] apply network coding techniques to named data networks

(NDN) [16] for high throughput in 5G IoT. In [17], path

survivability is considered in routing decision making. Real-

time routing is studied in [18], and secure routing in [6]. They

do not target the scalability issue in enterprise IoT.

Afanasyev et al. [19], [20] improve NDN routing scalability:

instead of expensively maintaining forwarding information for

all prefixes, forwarders only do that for a subset of prefixes

to which other producers delegate their namespaces. In [21],

to eliminate such maintenance, forwarders make on-demand

routing decisions. LASeR [22] has a hierarchical network:

cluster heads maintain routes to each other, and are used by

their cluster members for inter-cluster communication.

Though using hierarchy for high scalability is not new,

ours is specifically devised for indoor enterprise IoT envi-

ronments and uniquely congruent with objects’ installation

hierarchy. Thus objects’ roles can be automatically, reasonably

determined instead of manually appointed. Besides, subjects’

operation patterns (e.g., intra-room operations are frequent,

inter-building ones not) are leveraged to reduce routing estab-

lishment overhead and further improve scalability.

IX. CONCLUSION

In this paper we describe the design, implementation and

evaluation of GraphiteRouting, a peer-based, name-based, hi-

erarchical routing protocol leveraging building hierarchy. Most

devices maintain routing entries for same-room devices only,

and a fraction of them are gateways for traffic from/to outside

of the room. It has good human accessibility, fast routing table

updating (< 5 s for convergence), quick command forwarding

(< 0.3 s over 8 hops), and is scalable (at most dozens of

routing entries per node) to enterprise IoT.

ACKNOWLEDGMENT

This work is supported in part by the National Science

Foundation under grant number 1652276.

REFERENCES

[1] D. B. Johnson, D. A. Maltz, J. Broch et al., “Dsr: The dynamic
source routing protocol for multi-hop wireless ad hoc networks,” Ad
hoc networking, vol. 5, pp. 139–172, 2001.

[2] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced
distance-vector routing (dsdv) for mobile computers,” in ACM SIG-
COMM computer communication review, vol. 24, no. 4. ACM, 1994,
pp. 234–244.

[3] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance
vector (aodv) routing,” Tech. Rep., 2003.

[4] F. Al-Turjman, “Cognitive routing protocol for disaster-inspired internet
of things,” Future Generation Computer Systems, vol. 92, pp. 1103–
1115, 2019.

[5] K. Lei, S. Zhong, F. Zhu, K. Xu, and H. Zhang, “An ndn iot content
distribution model with network coding enhanced forwarding strategy
for 5g,” IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp.
2725–2735, 2017.

[6] D. Airehrour, J. Gutierrez, and S. K. Ray, “A lightweight trust de-
sign for iot routing,” in 2016 IEEE 14th Intl Conf on Depend-
able, Autonomic and Secure Computing, 14th Intl Conf on Perva-
sive Intelligence and Computing, 2nd Intl Conf on Big Data Intelli-
gence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech). IEEE, 2016, pp. 552–557.

[7] Q. Zhou, M. Elbadry, F. Ye, and Y. Yang, “Flexible, fine grained access
control for internet of things,” in 2017 IEEE/ACM Second International
Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 2017, pp. 333–334.

[8] ——, “Heracles: Scalable, fine-grained access control for internet-of-
things in enterprise environments,” in IEEE INFOCOM 2018-IEEE
Conference on Computer Communications. IEEE, 2018, pp. 1772–
1780.

[9] Q. Zhou and F. Ye, “Apex: automatic precondition execution with
isolation and atomicity in internet-of-things,” in Proceedings of the Inter-
national Conference on Internet of Things Design and Implementation.
ACM, 2019, pp. 25–36.

[10] J. Shen, A. Wang, C. Wang, P. C. Hung, and C.-F. Lai, “An efficient
centroid-based routing protocol for energy management in wsn-assisted
iot,” IEEE Access, vol. 5, pp. 18 469–18 479, 2017.

[11] Y. Jin, S. Gormus, P. Kulkarni, and M. Sooriyabandara, “Content
centric routing in iot networks and its integration in rpl,” Computer
Communications, vol. 89, pp. 87–104, 2016.

[12] D. S. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-throughput
path metric for multi-hop wireless routing,” Wireless networks, vol. 11,
no. 4, pp. 419–434, 2005.

[13] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of hot-
potato routing in ip networks,” in ACM SIGMETRICS Performance
Evaluation Review, vol. 32, no. 1. ACM, 2004, pp. 307–319.

[14] A. Hoque, S. O. Amin, A. Alyyan, B. Zhang, L. Zhang, and L. Wang,
“Nlsr: named-data link state routing protocol,” in Proceedings of the 3rd
ACM SIGCOMM workshop on Information-centric networking. ACM,
2013, pp. 15–20.

[15] C. Wu, D. Gunatilaka, A. Saifullah, M. Sha, P. B. Tiwari, C. Lu, and
Y. Chen, “Maximizing network lifetime of wirelesshart networks under
graph routing,” in 2016 IEEE First International Conference on Internet-
of-Things Design and Implementation (IoTDI). IEEE, 2016, pp. 176–
186.

[16] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, P. Crowley, C. Pa-
padopoulos, L. Wang, B. Zhang et al., “Named data networking,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 3, pp. 66–73,
2014.

[17] M. Elappila, S. Chinara, and D. R. Parhi, “Survivable path routing in
wsn for iot applications,” Pervasive and Mobile Computing, vol. 43, pp.
49–63, 2018.

[18] C. Wu, D. Gunatilaka, M. Sha, and C. Lu, “Real-time wireless routing
for industrial internet of things,” in 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation (IoTDI).
IEEE, 2018, pp. 261–266.

[19] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “Map-and-encap
for scaling ndn routing,” Univ. California at Los Angeles, Los Angeles,
CA, USA, Rep. NDN-0004, 2015.

[20] ——, “Snamp: Secure namespace mapping to scale ndn forwarding,”
in 2015 IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS). IEEE, 2015, pp. 281–286.

[21] O. Ascigil, S. Rene, I. Psaras, and G. Pavlou, “On-demand routing
for scalable name-based forwarding,” in Proceedings of the 5th ACM
Conference on Information-Centric Networking. ACM, 2018, pp. 67–
76.

[22] T. Mick, R. Tourani, and S. Misra, “Laser: Lightweight authentication
and secured routing for ndn iot in smart cities,” IEEE Internet of Things
Journal, vol. 5, no. 2, pp. 755–764, 2017.

Authorized licensed use limited to: University of Illinois. Downloaded on October 27,2022 at 13:46:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

